
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (8): 32-40.DOI: 10.12068/j.issn.1005-3026.2025.20250074
孙旭东1, 刘彬2, 林智杰1,2
收稿日期:2025-06-27
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
林智杰
作者简介:孙旭东(1961—),男,辽宁磐石人,东北大学教授,博士生导师基金资助:Xu-dong SUN1, Bin LIU2, Zhi-jie LIN1,2
Received:2025-06-27
Online:2025-08-15
Published:2025-11-24
Contact:
Zhi-jie LIN
摘要:
银基电接触材料的抗电弧性能直接关系到电气可靠性.本文从被动和主动抗电弧两个角度,综述了银基电接触材料的抗电弧性能研究进展.在被动抗电弧方面,详细探讨了增强相的熔池润湿性改善、几何形状调控以及高导热导电陶瓷的应用.通过添加改善熔池润湿性的组元,以及采用纳米多孔结构、夹心结构等特殊几何形状的增强相可有效提升银基电接触材料的抗电弧性能.此外,高导热导电陶瓷的加入也为材料的抗电弧能力提供了新的思路.在主动抗电弧方面,分析了高耐压增强相、熔解断弧增强相、气化灭弧增强相以及固态相变灭弧增强相的作用机制.在智能化、电气化和大功率化发展的背景下,唯有协同提高主动与被动抗电弧作用,才能满足日益复杂的工况要求,这也将是未来电接触材料发展的重要方向.
中图分类号:
孙旭东, 刘彬, 林智杰. 高抗电弧银基电接触材料增强相研究进展[J]. 东北大学学报(自然科学版), 2025, 46(8): 32-40.
Xu-dong SUN, Bin LIU, Zhi-jie LIN. Research Progress on Reinforcing Phases of High Arc Resistance Silver-Based Electrical Contact Materials[J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 32-40.
图2 阴极电弧侵蚀作用下热与力对Ag-SnO2电接触材料的联合作用[34]
Fig.2 Combined action of heat and force on the Ag-SnO2 electrical contact materials under cathode arc erosion[34]
| [1] | 刘满门,谢明,杨有才,等.银基电接触材料新体系研究进展[J].电工材料,2023 (2):77-83. |
| Liu Man-men, Xie Ming, Yang You-cai, et al. Research progress on new systems of silver-based electrical contact materials[J]. Electrical Engineering Materials, 2023 (2): 77-83. | |
| [2] | 崔得锋,黄岚霞,王景芹,等. 2019—2023年电接触材料行业发展概况综述及趋势[J].电工材料,2024(6):1-5. |
| Cui De-feng, Huang Lan-xia, Wang Jing-qin, et al. Overview and trend outlook of the development of electrical contact materials industry from 2019 to 2023 [J]. Electrical Engineering Materials, 2024 (6):1-5. | |
| [3] | Akbi M. Effects of arcing in air on the microstructure and morphology of silver-based contact materials in correlation with their electron emission properties[J]. IEEE Transactions on Plasma Science, 2016, 44(9):1847-1857. |
| [4] | 杨瑞,刘绍宏,朱海澄,等. 电接触材料电弧侵蚀研究进展[J].材料导报,2022, 36(17):134-140. |
| Yang Rui, Liu Shao-hong, Zhu Hai-cheng, et al. Research progress on the arc erosion of electrical contact materials[J]. Materials Reports, 2022, 36(17):134-140. | |
| [5] | 陈杨方, 颜小芳, 柏小平, 等. 不同氧化物颗粒尺寸对AgCdO电接触材料性能影响的研究[J].电工材料,2023 (2):14-18. |
| Chen Yang-fang, Yan Xiao-fang, Bai Xiao-ping, et al. Study on the effect of different oxide particle size on properties of AgCdO electrical contact materials[J]. Electrical Engineering Materials, 2023(2):14-18. | |
| [6] | Huang W B, Yu H J, Wang L, et al. State of the art and prospects in sliver-and copper-matrix composite electrical contact materials[J]. Materials Today Communications, 2023, 37:107256. |
| [7] | 王应,王军,王俊,等. 新型组元触点材料及其电弧侵蚀研究进展[J].功能材料,2024, 55(3):3083-3093. |
| Wang Ying, Wang Jun, Wang Jun, et al. Research progress of new component contact materials and their arc erosion[J]. Journal of Functional Materials, 2024, 55(3):3083-3093. | |
| [8] | 马光磊,张玲洁,吴新合,等. Ag/SnO2电接触材料的制备及其燃弧特性研究[J]. 稀有金属材料与工程, 2020, 49(4), 1312-1324. |
| Ma Guang-lei, Zhang Ling-jie, Wu Xin-he, et al. Preparation and arcing characteristics of Ag/SnO2 electrical contacts[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1312-1324. | |
| [9] | 师浩军,侯海云.掺杂SnO2形貌调控对Ag-SnO2电接触材料性能的影响[D].西安:西安工程大学,2021. |
| Shi Hao-jun, Hou Hai-yun. The influence of doping SnO2 morphology control on the properties of Ag-SnO2 electrical contact material [D]. Xi'an: Xi'an Polytechnic University, 2021. | |
| [10] | 潘杰, 张秀芳, 王美琪, 等. 低压电器用AgZnO触头材料的应用研究[J]. 电工材料, 2025(1): 1-4. |
| Pan Jie, Zhang Xiu-mei, Wang Mei-qi, et al. Application of AgZnO contact material for low voltage electrical apparatus [J]. Electrical Engineering Materials, 2025(1): 1-4. | |
| [11] | Xu S H, Chen Z Y, Shao W Z, et al. Effects of low-electronegativity doping on the temperature rise of Ag/ZnO electrical contact materials [J]. Journal of Alloys and Compounds, 2024, 1003(25): 175592. |
| [12] | Wei Z J, Zhang L J, Shen T, et al. Effects of oxide-modified spherical ZnO on electrical properties of Ag/ZnO electrical contact material [J]. Journal of Materials Engineering and Performance, 2016, 25(9): 3662-3671. |
| [13] | Zhang Y J, Song B, Zhao X, et al. Microstructure and properties of Ag/SnO2 functional material manufactured by selective laser melting [J]. Nano Materials Science, 2019, 1(3): 208-214. |
| [14] | 王金龙,付翀,宁静,等. Ag-SnO2电接 触材料的研究进展及发展趋势[J].贵金属,2021, 42(3): 85-92. |
| Wang Jin-long, Fu Chong, Ning Jing, et al. Research progress and development trend of Ag-SnO2 electrical contact materials [J]. Precious Metals, 2021, 42(3): 85-92. | |
| [15] | Wang S, Zheng T T, Xie M, et al. Internal oxidation thermodynamics and isothermal oxidation behavior of AgSnO2 electrical contact materials [J]. Rare Metal Materials and Engineering, 2014, 43(4): 796-798. |
| [16] | Shang S, Wang Z B, Li W Y, et al. The performance degradation comparison test and failure mechanism of silver metal oxide contact materials [C]// 2019 IEEE Holm Conference on Electrical Contacts. Milwaukee: IEEE, 2019: 335-343. |
| [17] | 王海涛,文攀龙,梁磊,等.润湿性对AgSnO2TiO2触头材料性能的影响[J].电子元件与材料,2016, 35(7): 80-83. |
| Wang Hai-tao, Wen Pan-long, Liang Lei, et al. Effect of wettability on properties of AgSnO2 TiO2 contact material [J]. Electronic Components and Materials, 2016, 35(7): 80-83. | |
| [18] | Wang J, Zhao H D, Wang J B, et al. Effect of CuO additives on the formation of SnO2-rich layers in Ag-SnO2 materials [J]. Journal of Alloys and Compounds, 2019, 770: 920-925. |
| [19] | Wang Y P, Li H Y. Improved workability of the nanocomposited AgSnO2 contact material and its microstructure control during the arcing process [J]. Metallurgical and Materials Transactions A, 2017, 48(2): 609-616. |
| [20] | Zhang L J, Shen T, Shen Q H, et al. Anti-arc erosion properties of Ag-La2Sn2O7/SnO2 contacts [J]. Rare Metal Materials and Engineering, 2016, 45(7): 1664-1668. |
| [21] | 高健峰,何胜,夏勇,等.低压电器用银基触点材料研究与应用进展[J].功能材料, 2024, 55(6): 6053-6061. |
| Gao Jian-feng, He Sheng, Xia Yong, et al. Research and application progress of silver-based contact materials in low voltage apparatus [J]. Journal of Functional Materials, 2024, 55(6): 6053-6061. | |
| [22] | Son J H, Song Y H, Yu H K, et al. Effects of Ni cladding layers on suppression of Ag agglomeration in Ag-based ohmic contacts on p-GaN [J]. Applied Physics Letters, 2009, 95(6): 062108. |
| [23] | 刘乔丹,田无边.银与Ti3AC2(A=Al,Si,Ge)相的高温润湿性及界面反应机理[D].南京:东南大学,2021. |
| Liu Qiao-dan, Tian Wu-bian. High-temperature wettability and interfacial reaction mechanism between silver and Ti3AC2 [D]. Nanjing: Southeast University, 2021. | |
| [24] | 张凯歌,丁健翔.高性能Ag/MAX复合电触头材料制备与应用研究[D].马鞍山:安徽工业大学,2023. |
| Zhang Kai-ge, Ding Jian-xiang. Research on preparation and application of high performance Ag/MAX composite electrical contact materials [D]. Ma'anshan: Anhui University of Technology, 2023. | |
| [25] | 彭韬,谭志龙,张晓波,等. Ag-MAX电触头材料的研究现状及发展趋势[J].贵金属, 2024, 45(1): 70-77. |
| Peng Tao, Tan Zhi-long, Zhang Xiao-bo, et al. Research status and development trend of Ag-MAX electrical contact materials [J]. Precious Metals, 2024, 45(1): 70-77. | |
| [26] | Wang D D, Tian W B, Lu C J, et al. Comparison of the interfacial reactions and properties between Ag/Ti3AlC2 and Ag/Ti3SiC2 electrical contact materials [J]. Journal of Alloys and Compounds, 2021, 857(15): 157588. |
| [27] | 杨瑞,孙旭东. Ag/MeO电接触材料的微结构设计与抗电弧侵蚀研究[D].沈阳:东北大学,2022. |
| Yang Rui, Sun Xu-dong. Microstructure design and anti-arc erosion properties of Ag/MeO electric contect materials [D]. Shenyang: Northeastern University, 2022. | |
| [28] | Lin Z J, Fan S Y, Liu M M, et al. Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact materia [J]. Journal of Alloys and Compounds, 2019, 788(5): 163-171. |
| [29] | Yang R, Liu S H, Chen J L, et al. Porous Y2O3 fiber-reinforced silver composite exhibiting enhanced mechanical and electrical properties [J]. Ceramics International, 2019, 45(2): 1881-1886. |
| [30] | Yang R, Liu S H, Cui H, et al. Quasi-continuous network structure greatly improved the anti-arc-erosion capability of Ag/Y2O3 electrical contacts [J]. Materials, 2022, 15(7): 2450. |
| [31] | Pei Y L, Zhou Y H, Wu X H, et al. Improving mechanical and electrical contact performance of silver based electrical contact material reinforced by flower spherical zinc oxide loaded with silver nanoparticles [J]. Materials Today Communications, 2024, 41: 110562. |
| [32] | Li G J, Ma Y Y, Zhang X L, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2(Cu, CuO) phases [J]. Applied Surface Science, 2021, 543: 148812. |
| [33] | Wang J, Duan C G, Chen S Y, et al. Arc erosion behaviors and surface characteristics of SnO2 nanofiber/particle reinforced Ag-based composite [J]. Journal of Materials Engineering and Performance, 2024, 33(10): 4754-4764. |
| [34] | Lin Z J, Liang Y C, Zeng Y M, et al. Morphology-tunable synthesis and formation mechanism of SnO2 particles and their application in Ag-SnO2 electrical contact materials [J]. Ceramics International, 2022, 48(5): 6052-6061. |
| [35] | Liu T, Han Y, Jia D C, et al. Graphene-enhanced CuW composites for high-voltage circuit breaker electrical contacts [J]. Applied Sciences, 2024, 14(7): 2731. |
| [36] | Yu H B, Sun Y, Kesim M T, et al. Surface degradation of Ag/W circuit breaker contacts during standardized UL testing [J]. Journal of Materials Engineering and Performance, 2015, 24(9): 3251-3262. |
| [37] | Wen K, Xu C H, Wang Z, et al. Mantis shrimp appendages-inspired Ag-CuO contact: synergistically enhancing the erosion and impact resistance via gradient-layered scatter-island/chain-skeleton structure [J]. Materials Characterization, 2024, 214: 114121. |
| [38] | Xue X Y, Wang Z, Nie H L, et al. Simultaneously enhancing erosion and compression resistance: designing AlCoCrFeNi high-entropy alloy strengthened Ag-based contacts [J]. Rare Metals, 2024, 43(9): 4476-4492. |
| [39] | 张国强,严荣良,余学锋,等.含F栅介质的Fowler-Nordheim效应[J].半导体学报,1998, 19(8): 56-60. |
| Zhang Guo-qiang, Yan Rong-liang, Yu Xue-feng, et al. Fowler-Nordheim effect of F-gate media [J]. Chinese Journal of Semiconductors, 1998, 19(8): 56-60. | |
| [40] | Akbi M, Bouchou A, Zouache N. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver-metal electrical contacts [J]. Applied Surface Science, 2014, 303: 131-139. |
| [41] | Wang J, Li Z G, Zhang H M, et al. Preparation and arc erosion behavior of novel Ag-TiN electrical contact materials [J]. Metallurgical and Materials Transactions B, 2025, 56(2): 1139-1149. |
| [42] | 张航,王献辉.Ag-TiB2-Ni电接触材料制备及性能研究[D].西安:西安理工大学,2023. |
| Zhang Hang, Wang Xian-hui. Investigation on preparation and properties of Ag-TiO2-Ni electrical contect materials [D]. Xi'an: Xi'an University of Technology, 2023. | |
| [43] | 韩金峰,秦国义. Ag-Ni-TiB2电接触材料的制备、组织与性能研究[D].昆明:云南大学,2018. |
| Han Jin-feng, Qin Guo-yi. Preparation, microstructure and properties of Ag-Ni-TiB2 electrical contact materials [D]. Kunming: Yunnan University, 2018. | |
| [44] | 丁宽宽,丁健翔,张凯歌,等.多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变[J].金属学报,2024, 60(12): 1731-1745. |
| Ding Kuan-kuan, Ding Jian-xiang, Zhang Kai-ge, et al. Micro/nano-mechanical behavior and microstructure evolution of eco-friendly Ag/Ti2SnC composite electrical contacts under multi-field coupled erosion [J]. Acta Metallurgica Sinica, 2024, 60(12): 1731-1745. | |
| [45] | 魏鑫鹏, 吴雪莲, 吴宬哲, 等.电弧侵蚀过程Ag/Ti2SnC复合电触头材料纳米力学退化行为及其机理[J].机械工程学报, 2024, 60(24): 163-176. |
| Wei Xin-peng, Wu Lian-xue, Wu Cheng-zhe, et al. Nano-mechanical degradation behavior and mechanism of Ag/Ti2SnC composite electrical contact materials during arc erosion [J]. Chinese Journal of Mechanical Engineering, 2024, 60(24): 163-176. | |
| [46] | Shen T, Zhang J, Zhang L J, et al. Preparation of perovskite La1- x Sr x CoO3- δ powders and its application in silver based electrical contact materials [J]. Rare Metal Materials and Engineering, 2018, 47(sup2): 48-52. |
| [47] | Zheng X H, Wang D S, Shen T, et al. Improving interfacial wettability, physical, and mechanical properties of Ag/La1- x Sr x CoO3 electrical contact materials by In situ Cu-doping [J]. Journal of Materials Engineering and Performance, 2024, 33(15): 7892-7903. |
| [48] | Ding J X, Tian W B, Zhang P G, et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials [J]. Journal of Alloys and Compounds, 2018, 740: 669-676. |
| [49] | Ding J X, Tian W B, Zhang P G, et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging [J]. Journal of Advanced Ceramics, 2019, 8(1): 90-101. |
| [50] | Ding J X, Huang P Y, Zha Y H, et al. High-purity Ti2AlC powder: preparation and application in Ag-based electrical contact materials [J]. Journal of Inorganic Materials, 2020, 35(6): 729. |
| [51] | Wang D D, Zhu H Y, Zheng M Y, et al. Comparative study of the microstructure and arc erosion resistance of Ag/Ti2AlX (X=C, N) electrical contact materials [J]. Journal of Alloys and Compounds, 2023, 961: 170870. |
| [52] | 贾海龙,朱刚,谢明,等. 新型Ag-Ti2AlN电接触材料的电弧侵蚀行为研究[J].稀有金属与硬质合金,2019, 47(1): 26-30, 69. |
| Jia Hai-long, Zhu Gang, Xie Ming, et al. Study on arc erosion behavior of a new type of Ag-Ti2AlN electrical contact material [J]. Rare metals and cemented carbides, 2019, 47(1): 26-30, 69. | |
| [53] | Wang H, Yuan H. Investigation on the electrical properties of AgNi contact materials with various Ni content [C]// 2017 IEEE Holm Conference on Electrical Contacts. Denver: IEEE, 2017: 221-224. |
| [54] | Mousavi Z, Pourabdoli M. Physical and chemical properties of Ag-Cu composite electrical contacts prepared by cold-press and sintering of silver-coated copper powder [J]. Materials Chemistry and Physics, 2022, 290: 126608. |
| [55] | Pons F, Cherkaoui M, Ilali I, et al. Evolution of the AgCdO contact material surface microstructure with the number of arcs [J]. Journal of Electronic Materials, 2010, 39(4): 456-463. |
| [56] | Han X L, Wang Z, Li G J, et al. Interfacial thermal stress relief in Ag-SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 [J]. Ceramics International, 2022, 48(12): 16638-16648. |
| [57] | 郑晓华, 王纯, 沈涛, 等. Bi2Sn2O7掺杂对Ag/SnO2材料界面润湿性及物理性能的影响[J]. 稀有金属材料与工程, 2022, 51(2): 552-558. |
| Zheng Xiao-hua, Wang Chun, Shen Tao, et al. Effect of Bi2Sn2O7 doping on interfacial wettability and physical properties of Ag/SnO2 materials [J]. Rare Metal Materials and Engineering, 2022, 51(2): 552-558. | |
| [58] | Rong M Z, Wang Q P. Effects of additives on the AgSnO2 contacts erosion behavior[C]// Proceedings of IEEE Holm Conference on Electrical Contacts. Pittsburgh: IEEE, 2002: 33-36. |
| [59] | 李向阳. 铁磁形状记忆合金增强银触点材料的研究[D].天津:河北工业大学,2014. |
| Li Xiang-yang. Study on ferromagnetic shape memory alloy reinforced silver contact materials [D]. Tianjin: Hebei University of Technology, 2014. | |
| [60] | Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nature Communications, 2015, 6(1): 8485. |
| [61] | Saghir A V, Beidokhti S M, Khaki J V, et al. One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O high entropy oxide nanoparticles through SCS procedure: thermodynamics and experimental evaluation [J]. Journal of the European Ceramic Society, 2021, 41(1): 563-579. |
| [62] | Lin Z J, Gao W H, Li S Y, et al. Effect of in-situ phase transition of (MgCoNiCuZn)O high-entropy oxides on microstructure and performance of Ag-based electrical contact materials [J]. Applied Surface Science, 2023, 630: 157479. |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||