东北大学学报(自然科学版) ›› 2004, Vol. 25 ›› Issue (6): 547-550.DOI: -

• 论著 • 上一篇    下一篇

基于信息融合的井下图像跟踪

宫义山;赵海   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳 110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2004-06-15 发布日期:2013-06-24
  • 通讯作者: Gong, Y.-S.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(69873007)

Underground image tracking based on data fusion

Gong, Yi-Shan (1); Zhao, Hai (1)   

  1. (1) Sch. of Info. Sci. and Eng., Northeastern Univ., Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2004-06-15 Published:2013-06-24
  • Contact: Gong, Y.-S.
  • About author:-
  • Supported by:
    -

摘要: 提出了一种新的井下图像跟踪算法图像相关算法与卡尔曼滤波器之间的信息进行融合·此算法基于贝叶斯规则,将一种常用的均方差图像相关算法和卡尔曼滤波器两者信息进行融合,得到一种新的成像跟踪算法·改进后的算法融合了MSD相关器和卡尔曼滤波器两者的信息,使得两者之间的信息反馈增强,提高了跟踪算法的性能和鲁棒性,大大减少了目标失锁的可能性·另外,改进后的算法还融合了噪声的统计性能,提高了对噪声的抑制能力·从理论计算和实验结果看,用这种算法获得的图像比一般相关算法获得的图像更具有真实性和准确性·

关键词: 图像相关, 信息融合, 卡尔曼滤波, 图像跟踪, 信息反馈, 贝叶斯规则

Abstract: A underground image tracking algorithm is developed by way of a fusion done between a commonly-used mean square image correlator and Kalman filter, based on Bayes rule. With the fusion of both the information from the MSD correlator and Kalman filter, the improved algorithm can enhance the information feedback between them and its tracking performance and robustness so as to minimize the out-of-control possibility. Furthermore, the improved algorithm also incorporate the statistical characteristics of noise to improve noise suppression ability. The theoretical and practical results show that the images acquired from the algorithm are much more real and accurate than the correlative algorithms.

中图分类号: