东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (3): 364-367.DOI: -

• 论著 • 上一篇    下一篇

基于最差情况性能优化的稳健盲波束形成算法

宋昕;汪晋宽;王彬;   

  1. 东北大学秦皇岛分校电子信息系;东北大学信息科学与工程学院;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(61004052);;

A robust blind beamforming algorithm based on worst-case performance optimization

Song, Xin (1); Wang, Jin-Kuan (1); Wang, Bin (2)   

  1. (1) Department of Electronics Information, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (2) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Song, X.
  • About author:-
  • Supported by:
    -

摘要: 针对在实际通信应用中存在导向向量偏差的情况下,阵列输出的信干噪比SINR性能急剧下降的问题,提出了稳健受限LSCMA算法,并对其输出性能进行了理论分析.该算法利用后验概率密度函数估计信号导向向量,并增加权向量的二次型约束,降低了信号波达方向的不确定性,提高了对信号导向向量偏差的稳健性,使阵列输出的信干噪比SINR接近最优值.仿真实验表明,所提稳健受限LSCMA算法比传统线性受限LSCMA算法的输出性能要好,更适合实际的通信环境.

关键词: 盲自适应波束形成, 信干噪比, 最差情况性能优化, 后验概率密度函数, 导向向量偏差

Abstract: A linear constrained least squares constant modulus algorithm (LSCMA) is a convergent and steady blind beamforming algorithm used in array signal processing. When adaptive arrays are applied in practical situations, the performance of a linear constrained LSCMA is known to undergo substantial degradation in the presence of even slight mismatches between the actual and presumed array responses to the desired signal. To account for mismatches, a novel robust constrained LSCMA algorithm based on worst-base performance optimization was proposed. The proposed algorithm estimates direction of arrival (DOA) of the actual signal from the observations by using a posterior probability density function, and analyzes theoretically the array output performance. Robust constrained LSCMA provides excellent robustness against uncertainty in the DOA of the actual signal and makes the mean output array SINR consistently close to the optimal one. Computer simulation results are presented to support better performance of the proposed algorithm compared with the linear constrained LSCMA algorithm.

中图分类号: