东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (11): 1538-1542.DOI: 10.12068/j.issn.1005-3026.2017.11.005

• 信息与控制 • 上一篇    下一篇

最大似然-可分离抛物面替代函数双能CT重建算法

侯晓文, 滕月阳, 刘瑜珈, 康雁   

  1. (东北大学 中荷生物医学与信息工程学院, 辽宁 沈阳110169)
  • 收稿日期:2016-06-08 修回日期:2016-06-08 出版日期:2017-11-15 发布日期:2017-11-13
  • 通讯作者: 侯晓文
  • 作者简介:侯晓文(1989-),男,山东菏泽人,东北大学博士研究生; 康雁(1964-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61372014).

Maximum Likelihood-Separable Paraboloidal Surrogate Function Algorithm for Dual-Energy CT Reconstruction

HOU Xiao-wen, TENG Yue-yang, LIU Yu-jia, KANG Yan   

  1. School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2016-06-08 Revised:2016-06-08 Online:2017-11-15 Published:2017-11-13
  • Contact: KANG Yan
  • About author:-
  • Supported by:
    -

摘要: 针对重建算法对不同的检测对象需要建立不同的查找表问题, 提出了一种基于最大似然-可分离抛物面型替代函数的重建算法.根据双能CT的物理模型和统计模型建立了对数似然函数,并以之为目标函数.根据目标函数的凸性,构造了可分离抛物面型替代函数.实验结果表明,该算法重建所得各能级图像与原始图像的相关系数大于0.983,信噪比大于12dB,均大于查表法重建结果的相应值,重建图像质量优于查表法.

关键词: 双能CT, 最大似然, 凸优化, 替代函数, 重建算法

Abstract: In the reconstruction algorithm, different lookup table problems need to be set up for different objects. An algorithm based on maximum likelihood-separable paraboloidal surrogate function was proposed. A log-likelihood function, as the objective function, was constructed based on the physical model and statistical model of dual-energy CT. Separable paraboloidal surrogate function was constructed according to the convex characteristic of the objective function. The experiment result shows that, for all of the energy levels, the correlation coefficient between the image reconstructed by this method and the original image is greater than 0.983, and the signal to noise ratio is greater than 12dB, both are greater than the corresponding values of the result using the look up table algorithm. The quality of image reconstructed by the proposed method was better than the look up table method.

Key words: dual-energy CT, maximum likelihood, convex optimization, surrogate function, reconstruction algorithm

中图分类号: