东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (6): 905-912.DOI: 10.12068/j.issn.1005-3026.2024.06.020

• 管理科学 • 上一篇    

面向订单装配系统(ATO)两阶段随机库存优化研究

靖可1, 刘宇2, 李乐华3   

  1. 1.大连海事大学 航运经济管理学院,辽宁 大连 116026
    2.大连海事大学 交通运输工程学院,辽宁 大连 116026
    3.厦门大学 管理学院,福建 厦门 361005
  • 收稿日期:2023-02-24 出版日期:2024-06-15 发布日期:2024-09-18
  • 通讯作者: 李乐华
  • 作者简介:靖 可(1981-),女,辽宁锦州人,大连海事大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(71871038);教育部人文社科项目(18YJC630061);中国博士后基金资助项目(2019M661085)

Two-Stage Stochastic Inventory Optimization for the Assemble to Order System

Ke JING1, Yu LIU2, Le-hua LI3   

  1. 1.School of Maritime Economics and Management,Dalian Maritime University,Dalian 116026,China
    2.Transportation Engineering College,Dalian Maritime University,Dalian 116026,China
    3.School of Management,Xiamen University,Xiamen 361005,China.
  • Received:2023-02-24 Online:2024-06-15 Published:2024-09-18
  • Contact: Le-hua LI
  • About author:LI Le-hua, E-mail: 17824853953 @163.com

摘要:

基于零部件的基本库存水平补货策略,在多周期订单产品需求不确定情况下构建两阶段随机优化模型:第一阶段在需求未知情况下,规划不同零部件基本库存水平决策变量,实现系统收益最大化;第二阶段针对订单交货期约束创新性设计订单指派决策变量,考虑在不确定需求收益和订单延期惩罚情况下,最大化订单期望收益.通过采样获取不同需求场景,并将不确定需求转成期望需求,针对该期望需求下的单阶段确定性模型求解,并与随机模型结果进行对比.数值实验表明,随机模型的优化结果远差于确定性模型,即未知信息具有一定的价值;同时通过对模型中参数的灵敏度分析,得到了实际中提升系统收益的策略.

关键词: 基本库存水平, 两阶段随机优化, 订单装配系统, 不确定需求, 订单指派

Abstract:

Based on the replenishment strategy for the basic inventory level of parts and components, a two?stage stochastic optimization model is constructed with multi‐period uncertain order product demands. In the first stage, the basic inventory level of components is the decision variable and needs to be determined at the condition of unknown demands, and the objective is to achieve the maximum system revenue. In the second stage, the order assignment variable is designed when the order due date constraint is required, and the objective of this stage is to maximize the expected order revenue by taking order revenue and tardiness penalty into account. Additionally, a single?stage deterministic model by transforming the uncertain demand to the determined expected demand is presented and the objective function value of this deterministic model is compared with that of the stochastic model. The numerical experiment results show the performance of the stochastic model is worse than that of the deterministic model, which indicates some value of the unknown information. Meanwhile, a sensitive analysis is implemented for the parameters in the model and a strategy is put forward to improve the system revenue in practice.

Key words: basic inventory level, two?stage stochastic optimization, assemble to order (ATO)system, uncertain demand, order assignment

中图分类号: