东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (10): 1369-1375.DOI: 10.12068/j.issn.1005-3026.2019.10.001

• 信息与控制 •    下一篇

MIT中灵敏度矩阵的聚类优化

王旭1, 张鑫慧2, 杨丹3   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 东北大学 中荷生物医学与信息工程学院, 辽宁 沈阳110169; 3. 东北大学 智能工业数据解析与优化教育部重点实验室, 辽宁 沈阳110819)
  • 收稿日期:2018-11-19 修回日期:2018-11-19 出版日期:2019-10-15 发布日期:2019-10-10
  • 通讯作者: 王旭
  • 作者简介:王旭( 1956-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51607029).

Clustering Optimization of Sensitivity Matrix in MIT

WANG Xu1, ZHANG Xin-hui2, YANG Dan3   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169, China; 3. Key Laboratory of Intelligent Industrial Data Analysis and Optimization, Ministry of Education, Northeastern University, Shenyang 110819, China.
  • Received:2018-11-19 Revised:2018-11-19 Online:2019-10-15 Published:2019-10-10
  • Contact: YANG Dan
  • About author:-
  • Supported by:
    -

摘要: 针对灵敏度矩阵的几何差异性问题,提出了一种基于聚类优化的灵敏度矩阵方法.首先,分析了灵敏度矩阵的几何差异性对MIT图像质量的影响;然后,基于几何差异性对灵敏度矩阵的向量进行聚类分组,应用能量函数对分组后的灵敏度向量赋予不同权值,构造一种聚类优化的灵敏度矩阵;最后,应用优化后的灵敏度矩阵,通过线性反投影算法和牛顿-拉夫逊迭代算法进行MIT图像重建.实验结果表明:采用聚类优化的灵敏度矩阵,使线性反投影算法的均方误差降低26%以上,图像相关系数提高10%以上, 使牛顿-拉夫逊迭代算法的均方误差降低5%以上,相关系数提高4%以上,证明了所提方法的有效性.

关键词: 灵敏度矩阵, 几何差异性, 能量函数, 线性反投影, 牛顿-拉夫逊

Abstract: Aiming at the geometric difference of sensitivity matrix, a clustering-based method for optimizing sensitivity matrix was proposed. Firstly, the influence of geometrical difference of sensitivity matrix on MIT image quality was analyzed. Then, based on the geometric difference, the vector of the sensitivity matrix was clustered, and the energy function was applied to assign different weights to the grouped sensitivity vector, and a clustering optimization sensitivity matrix was constructed. Finally, the optimized sensitivity matrix was used to reconstruct the MIT image with the linear back projection algorithm and the Newton-Raphson(NR) iterative algorithm. Experimental results showed that with the sensitivity matrix of clustering optimization, the mean square error of the linear back projection algorithm is reduced by more than 26%, the image correlation coefficient is increased by more than 10%, the mean square error of NR iterative algorithm is decreased by more than 5%, and the correlation coefficient is increased by more than 4%, which proves the effectiveness of the proposed method.

Key words: sensitivity matrix, geometric difference, energy function, linear back projection, Newton-Raphson(NR)

中图分类号: