东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (4): 470-474.DOI: 10.12068/j.issn.1005-3026.2020.04.003

• 信息与控制 • 上一篇    下一篇

基于连续最大流的三维肺实质快速分割算法

赵海, 周冰玲, 朱宏博, 窦圣昶   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 收稿日期:2019-05-28 修回日期:2019-05-28 出版日期:2020-04-15 发布日期:2020-04-17
  • 通讯作者: 赵海
  • 作者简介:赵海(1959-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N161608001); 国家社会科学基金资助项目(18ZD23).

Fast Segmentation Algorithm of 3D Lung Parenchyma Based on Continuous Max-Flow

ZHAO Hai, ZHOU Bing-ling, ZHU Hong-bo, DOU Sheng-chang   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2019-05-28 Revised:2019-05-28 Online:2020-04-15 Published:2020-04-17
  • Contact: ZHOU Bing-ling
  • About author:-
  • Supported by:
    -

摘要: 肺结节是肺癌的表征形式,形状结构多样且易与正常组织产生粘连,使分割存在困难.提出了一种基于空间约束的三维肺实质分割算法,实现对肺实质组织的分割及目标区域的获取.首先使用SLIC方法将二维CT序列图像构建成超像素图像矩阵,并对矩阵进行稀疏化处理,降低矩阵维度.然后连接相邻切片间的超像素构造肺实质组织的三维结构.最后采用连续最大流方法对构造的三维肺部结构进行分割.实验结果表明,所提算法能够快速准确地分割三维肺实质组织,对不同类型肺结节的分割均取得较好结果,具有一定的临床应用价值.

关键词: 肺实质分割, 空间约束, 连续最大流, 能量函数, 矩阵稀疏化

Abstract: Pulmonary nodules are the main form of lung cancer, which has complex shape and structure and is easy to adhere to normal tissues, making it difficult to segment. A three-dimensional lung parenchyma segmentation method based on spatial constraints was proposed to achieve segmentation of lung parenchyma tissue and acquisition of target regions.First, the SLIC method was used to construct a two-dimensional CT sequence image into a superpixel image matrix, and the matrix was thinned to reduce the dimension of the matrix. Then the nodes between adjacent slices were connected to construct a three-dimensional structure of the lung parenchyma. Finally, the continuous max-flow method was used to segment the constructed three-dimensional lung structure. The experimental results showed that the proposed algorithm can quickly and accurately segment three-dimensional lung parenchyma tissue, and obtain good results for segmentation of different types of lung nodules, which has certain clinical application value.

Key words: segmentation of lung parenchyma, space constraint, continuous max-flow, energy function, sparse matrix

中图分类号: