东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (4): 538-543.DOI: 10.12068/j.issn.1005-3026.2021.04.012

• 机械工程 • 上一篇    下一篇

原位生成NbC增强YCF102熔覆层热力学与耐磨性研究

郗文超, 宋博学, 梁赢东, 于天彪   

  1. (东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 修回日期:2020-09-08 接受日期:2020-09-08 发布日期:2021-04-15
  • 通讯作者: 郗文超
  • 作者简介:郗文超(1991-),男,辽宁沈阳人,东北大学博士研究生; 于天彪(1968-),男,吉林榆树人,东北大学教授, 博士生导师.
  • 基金资助:
    国家工信部绿色制造系统集成项目(201675514).

Research on Thermodynamics and Wear Resistance of In-situ NbC Reinforced YCF102 Cladding Layer

XI Wen-chao, SONG Bo-xue, LIANG Ying-dong, YU Tian-biao   

  1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Revised:2020-09-08 Accepted:2020-09-08 Published:2021-04-15
  • Contact: YU Tian-biao
  • About author:-
  • Supported by:
    -

摘要: 熔覆层性能难以满足特定的工艺要求,已成为限制激光熔覆发展的关键因素之一.鉴于此,在45号钢基体上制备出原位生成NbC增强YCF102熔覆层,并进行了热力学分析.通过XRD,SEM和EDS对其微观形貌及组成成分进行了分析,对其显微硬度及耐磨性进行了研究.结果表明:激光功率的改变对激光熔覆过程中原位反应的反应程度有显著影响,过大或者过小的激光功率均会对原位反应的发生起到抑制作用;YCF102熔覆层中原位生成的NbC颗粒的主要形态为四边形和花瓣形;当激光功率为525W时,原位生成NbC增强YCF102熔覆层具有较高的显微硬度及良好的耐磨性.

关键词: 激光熔覆;原位生成NbC;微观形貌;显微硬度;耐磨性

Abstract: The difficulty of cladding layer performance to meet the specific process requirements has become one of the key factors limiting the development of laser cladding. In order to solve this problem, the in-situ NbC reinforced YCF102 cladding layer was prepared on the 45# steel substrate, and the thermodynamic analysis was carried out. The microstructure and composition were analyzed and researched by XRD, SEM and EDS. The microhardness and wear resistance of the cladding layer were researched systematically. The results showed that the change of laser power has a significant effect on the reaction degree of the in-situ reaction in the laser cladding process, and the laser power that is too large or too small will inhibit the in-situ reaction.The main morphology of NbC particles formed in the in-situ YCF102 cladding layer is quadrilateral and petal shaped. When the laser power is 525W, the in-situ NbC reinforced YCF102 cladding layer has higher microhardness and better wear resistance.

Key words: laser cladding; in-situ NbC; microstructure; microhardness; wear resistance

中图分类号: