东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (6): 842-849.DOI: 10.12068/j.issn.1005-3026.2021.06.013

• 资源与土木工程 • 上一篇    下一篇

基于无人机点云数据的露天采场矿车提取方法

毛亚纯1, 伏雨文1, 曹旺1, 赵占国2   

  1. (1. 东北大学 资源与土木工程学院, 辽宁 沈阳 110819; 2. 中国黄金集团, 北京100000)
  • 修回日期:2020-10-21 接受日期:2020-10-21 发布日期:2021-06-23
  • 通讯作者: 毛亚纯
  • 作者简介:毛亚纯(1966-),男,辽宁本溪人,东北大学教授,博士生导师; 赵占国(1968-),男,辽宁义县人,中国黄金集团教授级高级工程师.
  • 基金资助:
    国家重点研发计划项目(2016YFC0801602).

Extraction Method of Open Pit Mine Car Based on UAV Point Cloud Data

MAO Ya-chun1, FU Yu-wen1, CAO Wang1, ZHAO Zhan-guo2   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 2. China Gold Group, Beijing 100000, China.
  • Revised:2020-10-21 Accepted:2020-10-21 Published:2021-06-23
  • Contact: FU Yu-wen
  • About author:-
  • Supported by:
    -

摘要: 针对在基于无人机点云数据进行露天采场验收测量过程中,由于矿车点集的存在导致验收精度降低的关键问题,提出了一种露天采场矿车点集自动提取方法.以哑巴岭露天采场无人机点云为数据源,首先利用渐进式形态学滤波算法分割出地面点与非地面点,然后通过改进的欧氏聚类算法对非地面点中的矿车点集进行聚类提取,最后基于国际摄影测量和遥感学会(ISPRS)提出的误差评判标准对矿车提取结果进行评估分析.分析结果表明,该方法可以有效提取露天采场中的矿车点集,为实现露天采场快速高效验收提供了重要的技术支持.

关键词: 无人机三维点云;露天采场验收测量;点云分割提取;渐进式形态学滤波算法;欧氏聚类算法

Abstract: In order to solve the key problem that the existence of the mine car point sets in open pit decreases the accuracy of the UAV point cloud data, an automatic extraction method of the mine car point sets in open pit stope was proposed. Using the UAV point cloud of the Yabaling open pit as the data source, the ground points and non-ground points were distinguished using the progressive morphological filtering algorithm, then the set of mine car points were extracted from the non-ground points by clustering them with an improved Euclidean clustering algorithm, and finally the mine car extraction results were evaluated and analyzed based on the error criterion proposed by the International Society for Photogrammetry and Remote Sensing (ISPRS). The results show that the method can effectively extract the set of mine car points in the open pit, and can provide an important technical support for fast and efficient check and acceptance of the open pit.

Key words: UAV 3D point cloud; acceptance measurement of open pit; point cloud segmentation and extraction; progressive morphological filtering algorithm; Euclidean clustering algorithm

中图分类号: