东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (10): 1397-1404.DOI: 10.12068/j.issn.1005-3026.2022.10.005

• 信息与控制 • 上一篇    下一篇

利用对话模型引导的对话生成推荐

齐孝龙, 韩东红, 高翟, 乔百友   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 修回日期:2021-10-11 接受日期:2021-10-11 发布日期:2022-11-07
  • 通讯作者: 齐孝龙
  • 作者简介:齐孝龙(1996-),男,河南安阳人,东北大学硕士研究生; 韩东红(1968-),女,河北平山人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2019YFB1405300); 国家自然科学基金资助项目(61672144); 中央高校基本科研业务费专项资金资助项目(N2016009).

Using Dialogue Model to Guide Recommendation of Dialogue Generation

QI Xiao-long, HAN Dong-hong, GAO Di, QIAO Bai-you   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Revised:2021-10-11 Accepted:2021-10-11 Published:2022-11-07
  • Contact: HAN Dong-hong
  • About author:-
  • Supported by:
    -

摘要: 对话推荐技术旨在通过与用户的对话交互完成高质量的信息推荐.针对已有研究存在的对话目标预测准确性不高的问题,提出一种利用对话模型引导的对话生成推荐(dialogue guided recommendation of dialogue generation, DGRDG)模型.首先,利用对话模型生成对话目标,通过经典的Seq2Seq模型融合输入的对话历史、用户画像以及知识信息来生成对话目标;其次,提出目标重规划策略(goal replan policy, GRP)来修正生成的对话目标,以提高对话目标预测的准确率.在DuRecDial数据集上进行实验的结果表明,对话目标生成模块在引入目标重规划策略后,对话目标预测的准确率提高了3.93%;总体模型在BLEU,DISTINCT,F1以及人工评价指标上具有较好的效果.

关键词: 对话推荐;对话生成;对话目标规划;管道模型;对话策略

Abstract: Conversational recommendation technology aims to achieve high-quality information recommendation through dialogue interaction with users. Aiming at the problem that the accuracy of dialogue goal prediction is not high, a dialogue guided recommendation of dialogue generation(DGRDG)model is proposed. Firstly, a dialogue model is used to generate the dialogue goal, and the classic Seq2Seq model is used to fuse the input dialogue history, user profile and knowledge information to generate the dialogue goal. Secondly, a goal replan policy(GRP)is proposed to modify the generated dialogue goal to improve the accuracy of dialogue goal prediction. The experimental results on DuRecDial dataset show that the accuracy of dialogue goal prediction is improved by 3.93% after the GRP is introduced into the dialogue goal generation module. And the overall model has acquired good results in BLEU, DISTINCT, F1 and human evaluation.

Key words: conversational recommendation; dialogue generation; dialogue goal planning; pipeline model; dialogue policy

中图分类号: