东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (2): 186-191.DOI: 10.12068/j.issn.1005-3026.2023.02.005

• 信息与控制 • 上一篇    下一篇

针对鬼成像的聚合型三维目标匹配滤波

张顺尧1, 桑爱军1, 宋立军2, 王世刚1   

  1. (1. 吉林大学 通信工程学院, 吉林 长春130022; 2. 吉林工程技术师范学院, 吉林 长春130052)
  • 修回日期:2021-11-08 接受日期:2021-11-08 发布日期:2023-02-27
  • 通讯作者: 张顺尧
  • 作者简介:张顺尧(1998-),男,吉林省吉林市人,吉林大学硕士研究生; 桑爱军(1973-),女,山东莱州人,吉林大学教授.
  • 基金资助:
    吉林省自然科学基金资助项目(20200201295JC); 吉林省科技发展计划国际合作项目(20200801042GH) .

Convergent Three-dimensional Target Matching Filtering for Ghost Imaging

ZHANG Shun-yao1, SANG Ai-jun1, SONG Li-jun2, WANG Shi-gang1   

  1. 1. College of Telecommunication Engineering, Jilin University, Changchun 130022, China; 2. Jilin Engineering Normal University,Changchun 130052, China.
  • Revised:2021-11-08 Accepted:2021-11-08 Published:2023-02-27
  • Contact: SANG Ai-jun
  • About author:-
  • Supported by:
    -

摘要: 针对视频鬼成像重构采样次数少、清晰度低、噪声大等问题,提出了一种聚合型三维目标匹配滤波方法.首先将鬼成像视频中的每一帧图像与待优化帧进行块匹配,将块匹配后的每一帧图像按照时序排序组成三维矩阵.根据每一帧图片的帧序,赋予其不同的帧权值,对矩阵进行三维加权中值滤波.经过运动目标的欠采样仿真与实验对比后,结果表明本文方法相较于现存的三维滤波方法,不仅噪声系数更低、结构保留程度更好,同时获到了更好的主观评价(Brisque).对比原始实验恢复图,本文方法在噪声系数和边缘模糊度上分别下降34.25%,6.86%,在Brisque主观评价上提升了45.84%.

关键词: 计算鬼成像;块匹配算法;中值滤波;三维加权滤波;视频滤波

Abstract: Aiming at the problems of low sampling frequency, low resolution and high noise in video ghost imaging reconstruction, an aggregated three-dimensional target matching filtering method was proposed. Firstly, each frame of the ghost imaging video is block-matched with the frame to be optimized and each frame of images after block matching is arranged to form a three-dimensional matrix according to the time sequence. According to the frame sequence of each frame picture, different frame weights are assigned to it. Then the matrix is subjected to three-dimensional weighted median filtering. After under-sampling simulation and experimental comparison of moving targets, the method proposed has not only lower noise figure and better structure retention, but also a better subjective evaluation compared with the existing three-dimensional filtering methods. Compared with the original experimental restoration graph, the proposed method reduces the noise figure and edge ambiguity by 34.25% and 6.86%, respectively, and the Brisque subjective evaluation was improved by 45.84%.

Key words: computational ghost imaging; block matching algorithm; median filter; three-dimensional weighted filtering; video filtering

中图分类号: