东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (2): 177-185.DOI: 10.12068/j.issn.1005-3026.2023.02.004

• 信息与控制 • 上一篇    下一篇

基于空间自注意力机制和深度特征重建的脑MR图像分割方法

魏颖1, 林子涵1, 齐林1, 李伯群2   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 辽宁科技大学 电子与信息工程学院, 辽宁 鞍山114051)
  • 修回日期:2021-12-10 接受日期:2021-12-10 发布日期:2023-02-27
  • 通讯作者: 魏颖
  • 作者简介:魏颖(1968-),女,辽宁本溪人,东北大学教授,博士生导师; 李伯群(1970-),男,辽宁鞍山人,辽宁科技大学教授.
  • 基金资助:
    国家自然科学基金资助项目(61871106); 辽宁省重点研发计划项目(2020JH2/10100029).

Brain MR Image Segmentation Based on Spatial Self-attention Mechanism and Depth Feature Reconstruction

WEI Ying1, LIN Zi-han1, QI Lin1, LI Bo-qun2   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819,China; 2. School of Electronic & Information Engineering, University of Science and Technology Liaoning, Anshan 114051,China.
  • Revised:2021-12-10 Accepted:2021-12-10 Published:2023-02-27
  • Contact: LI Bo-qun
  • About author:-
  • Supported by:
    -

摘要: 准确分割核磁共振(magnetic resonance,MR)图像中的脑组织是临床诊断、手术计划和辅助治疗的关键步骤.深度学习在各种图像分割任务中表现出巨大潜力,现有模型没有一种有效方法汇总远距离像素间的关系.在网络解码阶段不能很好地融合不同层级的特征,导致无法准确定位.为克服上述问题, 本文提出一种基于空间自注意力机制和深度特征重建的脑MR图像分割方法,构建了一个可以融合3维信息的2D模型,可快速准确对3D结构图像进行密集预测.在MRBrainS13数据集和IBSR数据集上进行充分地实验研究,结果表明本文方法在3D多模态和单模态脑MR图像分割方面优于目前的2D模型,运算和推理时间相比3D模型小很多,性能却十分接近.

关键词: 脑图像分割;全卷积网络;空间自注意力;通道注意力;深度特征重建

Abstract: Accurate segmentation of brain tissue in MR images is a key step in clinical diagnosis, surgical planning and adjuvant treatment. Deep-learning shows great potential in various image segmentation tasks, and existing models do not have an effective way to summarize the relationship between long-distance pixels. In the network decoding stage, the features of different levels cannot be well integrated, resulting in the inability to accurately locate. To overcome the above problems, this paper proposes a brain MR image segmentation method based on spatial self-attention mechanism and depth feature reconstruction, and constructs a 2D model that can fuse 3D information, which can quickly and accurately perform dense prediction on 3D structural images. The proposed method is fully experimented on MRBrainS13 data sets and IBSR data sets, and the results show that the model outperforms the current 2D model in 3D multimodal and unimodal brain MR image segmentation, with less computing and inference time compared to the 3D model, whereas the performance is very close.

Key words: brain image segmentation; fully convolutional network; spatial self-attention; channel attention; depth feature reconstruction

中图分类号: