东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (7): 1028-1036.DOI: 10.12068/j.issn.1005-3026.2024.07.015
王述红, 刘长宇, 侯钦宽, 曹莹
收稿日期:
2023-03-17
出版日期:
2024-07-15
发布日期:
2024-10-29
作者简介:
王述红(1969-),男,江苏泰州人,东北大学教授,博士生导师.
基金资助:
Shu-hong WANG, Chang-yu LIU, Qin-kuan HOU, Ying CAO
Received:
2023-03-17
Online:
2024-07-15
Published:
2024-10-29
摘要:
机械活化是提高尾矿活性的常用方法,将化学活化剂加入粉磨体系中的机械-化学活化方式是更为有效的手段.使用5种活化剂,采用了单掺和复配的方式对硅质铁尾矿(iron ore tailings,IOTs)粉磨特性及早期胶凝活性的影响进行对比分析.通过机械活化、机械-化学活化2种方式制备铁尾矿粉,测定2种活化方式磨细后IOTs的粉磨特性——比表面积、颗粒粒径分布(PSD)及3,7,28 d胶凝活性,利用XRD和SEM分析水化产物.结果表明:在相同的粉磨时间内,各活化剂的加入均能提高IOTs比表面积,粉磨90 min时添加复合活化剂的机械-化学活化与机械活化相比最多提高30.43%;活化剂的加入提高IOTs粉磨效率使PSD区间更窄;水化早期胶凝体系的强度提高主要是活化剂可促进钙矾石形成,后期强度提高是因为尾矿活性提高.本研究对硅质铁尾矿的高效利用具有重要意义.
中图分类号:
王述红, 刘长宇, 侯钦宽, 曹莹. 不同活化方式下硅质铁尾矿的粉磨特性与胶凝活性[J]. 东北大学学报(自然科学版), 2024, 45(7): 1028-1036.
Shu-hong WANG, Chang-yu LIU, Qin-kuan HOU, Ying CAO. Grinding Characteristics and Gelling Activity of Siliceous Iron Ore Tailings Under Different Activation Modes[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1028-1036.
比表面积/(m2·kg-1) | 凝结时间/min | 抗压强度/MPa | |||
---|---|---|---|---|---|
初凝 | 终凝 | 3 d | 7 d | 28 d | |
358 | 172 | 234 | 26.45 | 33.09 | 46.85 |
表1 P.I 42.5水泥性能
Table 1 P.I 42.5 cement performance
比表面积/(m2·kg-1) | 凝结时间/min | 抗压强度/MPa | |||
---|---|---|---|---|---|
初凝 | 终凝 | 3 d | 7 d | 28 d | |
358 | 172 | 234 | 26.45 | 33.09 | 46.85 |
材料 | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | Na2O |
---|---|---|---|---|---|---|---|
水泥 | 20.60 | 4.57 | 63.27 | 2.59 | 3.29 | 2.11 | 0.55 |
铁尾矿 | 74.89 | 4.39 | 4.28 | 9.78 | 4.52 | 0.47 | 0.59 |
表2 水泥和铁尾矿的化学组成(质量分数) (%)
Table 2 Chemical composition of cement and iron tailings (mass fraction)
材料 | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | Na2O |
---|---|---|---|---|---|---|---|
水泥 | 20.60 | 4.57 | 63.27 | 2.59 | 3.29 | 2.11 | 0.55 |
铁尾矿 | 74.89 | 4.39 | 4.28 | 9.78 | 4.52 | 0.47 | 0.59 |
编号 | 体积分数 | ||||||
---|---|---|---|---|---|---|---|
<1.13 μm | 1.13~4.03 μm | 4.04~9.86 μm | 9.87~21.2 μm | 21.3~40.1 μm | 40.2~58.9 μm | >58.9 μm | |
A1 | 4.50 | 13.99 | 15.37 | 17.79 | 18.26 | 11.93 | 18.14 |
A2 | 7.51 | 21.16 | 19.27 | 20.92 | 19.50 | 7.88 | 3.72 |
A3 | 9.56 | 23.65 | 19.43 | 20.91 | 17.83 | 6.18 | 2.43 |
A4 | 11.48 | 24.9 | 19.28 | 20.24 | 16.27 | 5.35 | 2.49 |
A5 | 12.24 | 25.69 | 19.35 | 20.33 | 15.64 | 4.89 | 1.85 |
A6 | 5.14 | 28.54 | 20.19 | 16.01 | 9.42 | 1.97 | 18.72 |
D1 | 2.82 | 16.99 | 18.79 | 19.01 | 21.18 | 14.11 | 7.10 |
D2 | 4.58 | 24.35 | 23.51 | 24.17 | 16.55 | 3.74 | 3.09 |
D3 | 6.95 | 29.66 | 23.59 | 22.96 | 12.83 | 2.30 | 1.39 |
D4 | 8.68 | 31.79 | 23.21 | 21.70 | 11.18 | 2.27 | 1.92 |
D5 | 8.09 | 33.30 | 23.77 | 21.41 | 9.80 | 2.26 | 1.38 |
表3 不同活化方式下IOTs的颗粒粒径分布 (%)
Table 3 The particle size of IOTs under different activation modes
编号 | 体积分数 | ||||||
---|---|---|---|---|---|---|---|
<1.13 μm | 1.13~4.03 μm | 4.04~9.86 μm | 9.87~21.2 μm | 21.3~40.1 μm | 40.2~58.9 μm | >58.9 μm | |
A1 | 4.50 | 13.99 | 15.37 | 17.79 | 18.26 | 11.93 | 18.14 |
A2 | 7.51 | 21.16 | 19.27 | 20.92 | 19.50 | 7.88 | 3.72 |
A3 | 9.56 | 23.65 | 19.43 | 20.91 | 17.83 | 6.18 | 2.43 |
A4 | 11.48 | 24.9 | 19.28 | 20.24 | 16.27 | 5.35 | 2.49 |
A5 | 12.24 | 25.69 | 19.35 | 20.33 | 15.64 | 4.89 | 1.85 |
A6 | 5.14 | 28.54 | 20.19 | 16.01 | 9.42 | 1.97 | 18.72 |
D1 | 2.82 | 16.99 | 18.79 | 19.01 | 21.18 | 14.11 | 7.10 |
D2 | 4.58 | 24.35 | 23.51 | 24.17 | 16.55 | 3.74 | 3.09 |
D3 | 6.95 | 29.66 | 23.59 | 22.96 | 12.83 | 2.30 | 1.39 |
D4 | 8.68 | 31.79 | 23.21 | 21.70 | 11.18 | 2.27 | 1.92 |
D5 | 8.09 | 33.30 | 23.77 | 21.41 | 9.80 | 2.26 | 1.38 |
编号 | 相关系数 | n | |
---|---|---|---|
A1 | 0.992 | 27.4 | 0.88 |
A2 | 0.990 | 16.4 | 0.93 |
A3 | 0.988 | 14.5 | 0.91 |
A4 | 0.992 | 12.7 | 0.82 |
A5 | 0.989 | 11.2 | 0.86 |
A6 | 0.849 | 14.5 | 0.69 |
D1 | 0.972 | 24.1 | 1.05 |
D2 | 0.965 | 12.7 | 0.95 |
D3 | 0.972 | 9.86 | 0.91 |
D4 | 0.978 | 8.68 | 0.92 |
D5 | 0.970 | 7.64 | 0.93 |
表4 铁尾矿在不同粉磨方式下RRB方程参数 (under different grinding methods)
Table 4 RRB equation parameters of iron tailings
编号 | 相关系数 | n | |
---|---|---|---|
A1 | 0.992 | 27.4 | 0.88 |
A2 | 0.990 | 16.4 | 0.93 |
A3 | 0.988 | 14.5 | 0.91 |
A4 | 0.992 | 12.7 | 0.82 |
A5 | 0.989 | 11.2 | 0.86 |
A6 | 0.849 | 14.5 | 0.69 |
D1 | 0.972 | 24.1 | 1.05 |
D2 | 0.965 | 12.7 | 0.95 |
D3 | 0.972 | 9.86 | 0.91 |
D4 | 0.978 | 8.68 | 0.92 |
D5 | 0.970 | 7.64 | 0.93 |
1 | Juenger M C G, Siddique R.Recent advances in understanding the role of supplementary cementitious materials in concrete[J].Cement & Concrete Research,2015,78:71-80. |
2 | Lothenbach B, Scrivener K, Hooton R D.Supplementary cementitious materials[J].Cement & Concrete Research,2011,41(12):217-229. |
3 | 全国矿产资源节约与综合利用报告(2019)解读之二[EB/OL].(2020-02-03)[2023-02-16].. |
org.cn/index.php?m=content&c=index&a=show&catid=6&id= 30672. | |
(Interpretation 2 of the national mineral resources conservation and comprehensive utilization report(2019)[EB/OL].(2020-02-03)[2023-02-16].) | |
4 | Cheng Y H, Huang F, Li W C,et al.Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J].Construction and Building Materials,2016,118:164-170. |
5 | 程云虹,黄菲,齐珊珊,等.高硅型铁尾矿对混凝土碳化及抗硫酸盐腐蚀性能的影响[J].东北大学学报(自然科学版),2019,40(1):121-125,149. |
Cheng Yun‑hong, Huang Fei, Qi Shan‑shan,et al.Effects of high silicon iron tailings on carbonization and sulfate corrosion resistance of concrete[J].Journal of Northeastern University(Natural Science),2019,40(1):121-125,149. | |
6 | Cheng Y H, Huang F, Qi S S,et al.Durability of concrete incorporated with siliceous iron tailings[J].Construction and Building Materials,2020,242:118147. |
7 | Yao G, Wang Q, Wang Z M,et al.Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement[J].Powder Technology,2020,360:863-871. |
8 | 朴春爱,王栋民,张力冉,等.机械力活化对铁尾矿活化性能的影响研究[J].硅酸盐通报,2016,35(9):2973-2979. |
Chun‑ai Piao, Wang Dong‑min, Zhang Li‑ran,et al.Study on the effect of mechanical activation on the activation performance of iron tailings[J].Bulletin of the Chinese Ceramic Society,2016,35(9):2973-2979. | |
9 | Han F H, Li L, Song S M,et al.Early‑age hydration characteristics of composite binder containing iron tailing powder[J].Powder Technology,2017,315:322-331. |
10 | Qian J S, Shi C J, Wang Z.Activation of blended cements containing fly ash[J].Cement and Concrete Research,2001,31(8):1121-1127. |
11 | Saedi A, Jamshidi‑Zanjani A, Darban A K.A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability[J].Journal of Environmental Management,2020,270:110881. |
12 | 朴春爱.铁尾矿粉的活化工艺和机理及对混凝土性能的影响研究[D].北京:中国矿业大学,2017. |
Chun‑ai Piao.Activation process and mechanism of iron tailings powder and its influence on concrete properties[D].Beijing:China University of Mining and Technology,2017. | |
13 | 匡敬忠,朱陆平,司加保,等.钨尾矿机械-化学活化及其与水泥水化反应机理[J].材料导报,2021,35(13):13018-13024. |
Kuang Jing‑zhong, Zhu Lu‑ping, Si Jia‑bao,et al.Mechanical‑chemical activation of tungsten tailings and its reaction mechanism with cement hydration[J].Materials Review,2021,35(13):13018-13024. | |
14 | 高敏.铁尾矿制备矿物掺合料和再生集料的关键技术研究[D].南京:东南大学,2021. |
Gao Min.Research on key technology of preparing mineral admixture and recycled aggregate from iron tailings[D].Nanjing:Southeast University,2021. | |
15 | 刘数华,阎培渝.石灰石粉对水泥浆体填充效应和砂浆孔结构的影响[J].硅酸盐学报,2008,36(1):69-72,77. |
Liu Shu‑hua, Yan Pei‑yu.Influence of limestone powder on filling effect of cement paste and pore structure of mortar[J].Journal of Silicate,2008,36(1):69-72,77. | |
16 | 童柏强.硅质铁尾矿机械力化学效应试验研究[D].沈阳:东北大学,2019. |
Tong Bai‑qiang.Experimental study on mechanochemical effects of siliceous iron tailings[D].Shenyang:Northeastern University,2019. | |
17 | 周双喜,陈益民,张文生,等.颗粒分布、比表面积、化学组成对水泥强度的影响[J].硅酸盐通报,2006,25(1):81-85. |
Zhou Shuang‑xi, Chen Yi‑min, Zhang Wen‑sheng,et al.The influence of particle distribution,specific surface area and chemical composition on cement strength[J].Bulletin of the Chinese Ceramic Society,2006,25(1):81-85. | |
18 | 赵计辉,王栋民,王学光,等.助磨剂配方设计及其对水泥性能的影响研究[J].硅酸盐通报,2014,33(4):724-730. |
Zhao Ji‑hui, Wang Dong‑min, Wang Xue‑guang,et al.Research on the design of grinding aid formula and its impact on cement properties[J].Bulletin of the Chinese Ceramic Society,2014,33(4):724-730. | |
19 | 傅秀新,潘志华,王冬冬.熟料和粉煤灰的颗粒尺寸分布与水泥性能的灰色关联分析[J].硅酸盐通报,2009,28(5):881-886. |
Fu Xiu‑xin, Pan Zhi‑hua, Wang Dong‑dong.Grey correlation analysis between particle size distribution of clinker and fly ash and cement properties[J].Bulletin of the Chinese Ceramic Society,2009,28(5):881-886. | |
20 | Wang J Q, Atrens A, Cousens D R,et al.Microstructure of X52 and X65 pipeline steels[J].Journal of Materials Science,1999,34(8):1721-1728. |
21 | 安强,潘慧敏,王帅,等.粉煤灰和矿渣粒度分布对混凝土微观结构和抗氯离子渗透性的影响[J].硅酸盐通报,2022,41(3):884-893. |
An Qiang, Pan Hui‑min, Wang Shuai,et al.The influence of particle size distribution of fly ash and slag on the microstructure and chloride ion resistance of concrete[J].Bulletin of the Chinese Ceramic Society,2022,41(3):884-893. |
[1] | 顾晓薇, 殷士奇, 张伟峰, 李晓慧. 机械活化对铁尾矿火山灰活性的影响[J]. 东北大学学报(自然科学版), 2022, 43(8): 1168-1176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||