东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (11): 1557-1564.DOI: 10.12068/j.issn.1005-3026.2024.11.005

• 信息与控制 • 上一篇    下一篇

基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法

马淑华, 李立振(), 秦汉民, 沙晓鹏   

  1. 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
  • 收稿日期:2023-06-16 出版日期:2024-11-15 发布日期:2025-02-24
  • 通讯作者: 李立振
  • 作者简介:马淑华(1967-),女,河北秦皇岛人,东北大学秦皇岛分校教授.
  • 基金资助:
    河北省自然科学基金资助项目(F2021501021)

Improved Surface Defects Detection Algorithm for Aluminum Profiles Based on PP-PicoDet-XS

Shu-hua MA, Li-zhen LI(), Han-min QIN, Xiao-peng SHA   

  1. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China.
  • Received:2023-06-16 Online:2024-11-15 Published:2025-02-24
  • Contact: Li-zhen LI
  • About author:LI Li-zhen, E-mail: lilizhen559@163.com

摘要:

铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla intersection over union)损失函数对训练过程进行优化,提高预测框的定位能力;采用量化蒸馏策略对模型进行压缩,提高推理速度.结果表明,改进的算法平均精度均值在交并比(intersection over union,IoU)阈值为0.5时达到了98.93%,在IoU阈值0.5~0.95范围内达到了57.60%,较未压缩的原始模型分别提高了1.73%和4.13%.将该算法部署到骁龙865移动端平台上进行推理,推理速度可达116.82帧/s,较未压缩的原始模型提高了47帧/s.

关键词: 铝型材, 缺陷检测, SimAM, 损失函数, 量化, 蒸馏

Abstract:

During the production and processing of aluminum profiles, multiple types of surface defects such as unclear features and varying scales may generate. In response to the problems of low accuracy, poor real?time performance, and strong subjectivity in existing manual sampling method, an improved surface defects detection algorithm is proposed for aluminum profiles based on PP-PicoDet-XS.The SimAM attention was embedded in the backbone to enhance the ability of extracting deep effective features. The SIoU(Scylla intersection over union) loss function is used to optimize the training process to improve the positioning ability of the prediction boxes. The quantization and distillation were used to compress the model to improve the inference speed. The results show that the improved algorithm achieves a mean average precision of 98.93% at intersection over union(IoU) threshold of 0.5, and 57.60% across IoU thresholds ranging from 0.5 to 0.95, which is 1.73% and 4.13% higher than the uncompressed original model. Deploying this algorithm on the Snapdragon 865 mobile platform for inference, the inference speed can reach 116.82 frames per second, which is 47 frames per second higher than the uncompressed original model.

Key words: aluminum profiles, defects detection, SimAM, loss function, quantization, distillation

中图分类号: