东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (9): 1238-1245.DOI: 10.12068/j.issn.1005-3026.2021.09.004

• 信息与控制 • 上一篇    下一篇

轻量化自适应特征选择目标检测网络

杨爱萍, 宋尚阳, 程思萌   

  1. (天津大学 电气自动化与信息工程学院, 天津300072)
  • 修回日期:2020-12-31 接受日期:2020-12-31 发布日期:2021-09-16
  • 通讯作者: 杨爱萍
  • 作者简介:杨爱萍(1977-),女,山东聊城人,天津大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(62071323,61771329,61632018); 天津市科技重大专项研发计划(新一代人工智能科技重大专项)(18ZXZNGX00320).

Lightweight Adaptive Feature Selection Network for Object Detection

YANG Ai-ping, SONG Shang-yang, CHENG Si-meng   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
  • Revised:2020-12-31 Accepted:2020-12-31 Published:2021-09-16
  • Contact: YANG Ai-ping
  • About author:-
  • Supported by:
    -

摘要: 在小目标物体检测、多类别物体检测尤其是轻量化检测模型等关键技术研究方面仍面临较大的挑战,基于此,本文提出一种轻量化自适应特征选择目标检测网络.该网络以特征金字塔为基础,提取多尺度图像特征并从空间维度上对特征图进行滤波,从通道维度上自适应地选择特征图中更重要的通道,降低多通道下噪声和干扰对目标特征的稀释作用,减少特征图在传递过程中的信息丢失.除此之外,构建深度可分离卷积的分类网络,降低后续处理的计算量,加快检测速度,实现网络的轻量化处理.在PASCAL VOC 2007数据集上的检测平均精度为77.7%,检测速度为14.3帧/s.在MS COCO数据集上的测试结果表明,该网络在精度损失小于5%的情况下,检测速度远超FPN,比Mask R-CNN可以更好地兼顾检测速度和检测精度.

关键词: 目标检测;特征金字塔;自适应特征选择;轻量化网络

Abstract: There are some limitations of key technologies in small object detection, multi-category object detection, and especially lightweight models. To solve these problems, this paper proposes a lightweight adaptive feature selection network for object detection. The network is constructed to extract multi-scale features based on the feature pyramid. To alleviate the noise interference and preserve the detail information, a feature selection module composed of spatial adaptation and channel adaptation is designed. Specifically, the feature maps are filtered from spatial dimension, encoded and decoded in channel dimension for selecting the meaningful features adaptively. Besides, the classification network is constructed through depth-wise separable convolution to reduce the computational cost, improve detection efficiency and realize the lightweight version of the network. The detection accuracy on the PASCAL VOC 2007 dataset is 77.7% in mean average precision(mAP), and the detection speed is 14.3 in frames per second(FPS). The results on the MS COCO dataset show that the proposed network outperforms FPN and Mask R-CNN at the cost of 5% accuracy loss and achieves a better balance between accuracy and efficiency.

Key words: object detection; feature pyramid; adaptive feature selection; lightweight network

中图分类号: