东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (11): 1621-1628.DOI: 10.12068/j.issn.1005-3026.2024.11.013

• 资源与土木工程 • 上一篇    下一篇

基于AD-Census的双目立体匹配改进算法

车德福1, 尚祥祥1(), 王夺2, 孙彦恩3   

  1. 1.东北大学 资源与土木工程学院,辽宁 沈阳 110819
    2.中冶沈勘工程技术有限公司,辽宁 沈阳 110169
    3.飞翼股份有限公司,湖南 长沙 410600
  • 收稿日期:2023-06-02 出版日期:2024-11-15 发布日期:2025-02-24
  • 通讯作者: 尚祥祥
  • 作者简介:车德福(1970-),男,山东海阳人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(41871310);中央高校基本科研业务费专项资金资助项目(N17241004)

Improved Binocular Stereo Matching Algorithm Based on AD-Census

De-fu CHE1, Xiang-xiang SHANG1(), Duo WANG2, Yan-en SUN3   

  1. 1.School of Resources & Civil Engineering,Northeastern University,Shenyang 110819,China
    2.Shen Kan Engineering & Technology Corporation,MCC,Shenyang 110169,China
    3.Feny Corporation Limited,Changsha 410600,China.
  • Received:2023-06-02 Online:2024-11-15 Published:2025-02-24
  • Contact: Xiang-xiang SHANG
  • About author:SHANG Xiang-xiang, E-mail: q2936258514@163.com

摘要:

针对绝对值之差(absolute difference,AD)-Census等传统双目立体匹配算法在低纹理区域、重复纹理区域匹配精度低的问题,提出一种融合大尺度窗口信息与曼哈顿距离的双目立体匹配算法.使用改进的绝对误差和(sum of absolute differences,SAD)代价与多灰度阈值Census代价计算得到融合代价,根据邻域像素与中心点的曼哈顿距离赋予权重,减少边缘像素对代价的影响.通过大尺度的窗口提取到的差异信息对融合代价进行筛选过滤,改善了算法在重复纹理区域、灰度相似区域精度较低的问题.与传统的AD-Census算法相比,该算法误匹配率减少约18%,对算法进行图形处理器(graphic processing unit,GPU)移植,使得算法在不同尺度分辨率的图像上运行速度提升1~2个数量级,满足双目立体匹配算法快速准确的需求.

关键词: 双目立体视觉, 立体匹配, AD-Census, 绝对误差和

Abstract:

A binocular stereo matching algorithm that integrates large?scale window information and Manhattan distance is proposed to address the low matching accuracy of traditional methods, such as AD-Census, in areas with low or repeated textures. The algorithm first uses an improved SAD cost and multi?gray threshold Census cost to calculate the fusion cost, and assigns weights based on the Manhattan distance between neighboring pixels and the center point to reduce the influence of edge pixels on the cost. The algorithm also screens and filters the difference information extracted from large scale windows to improve the accuracy in areas with repeated textures and low gray similarities. Compared to traditional AD-Census algorithm, the proposed algorithm reduces the false matching rate by approximately 18%. Furthermore, the algorithm has been transplanted to the GPU, allowing it to run 1~2 orders of magnitude faster on images with different scale resolutions, thus meeting the demands of quick and accurate binocular stereo matching.

Key words: binocular stereo vision, stereo matching, AD-Census, SAD (sum of absolute differences)

中图分类号: