东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (5): 10-19.DOI: 10.12068/j.issn.1005-3026.2025.20249048

• 信息与控制 • 上一篇    

基于面部掩码引导的多人场景图像伪造定位算法

刘佳彤, 王丽娜(), 汪润, 叶茜   

  1. 武汉大学 国家网络安全学院 空天信息安全与可信计算教育部重点实验室,湖北 武汉 430070
  • 收稿日期:2024-10-10 出版日期:2025-05-15 发布日期:2025-08-07
  • 通讯作者: 王丽娜
  • 作者简介:刘佳彤(1995—),女,河南桐柏人,武汉大学博士研究生
  • 基金资助:
    国家自然科学基金资助项目(62372334);国家重点研发计划项目(2023YFB3106900)

Facial Mask Guidance Based Multi-person Scene Images Forgery Localization Algorithm

Jia-tong LIU, Li-na WANG(), Run WANG, Xi YE   

  1. Key Laboratory of Aerospace Information Security and Trusted Computing (Ministry of Education),School of Cyber Science and Engineering,Wuhan University,Wuhan 430070,China.
  • Received:2024-10-10 Online:2025-05-15 Published:2025-08-07
  • Contact: Li-na WANG

摘要:

为解决现有伪造定位算法在小区域面部篡改的多人场景图像时性能下降、鲁棒性不足的问题,提出一种基于面部掩码引导的伪造定位模型FMG-L.首先,为了减轻多人场景图像中背景信息的干扰,设计面部掩码引导模块,鼓励FMG-L关注重要的面部区域;其次,为了提升FMG-L面对图像质量退化的鲁棒性,设计三通道特征提取模块提取多维特征,结合基于双重注意力网络的特征融合模块,增强模型学习到的伪造线索;最后,使用伪造区域定位模块进行伪造定位.在OpenForensics,ManulFake,FFIW和DiffSwap数据集上的实验结果表明,FMG-L能够有效进行伪造定位,具有面对多种图像退化和不同在线社交平台的强鲁棒性.

关键词: 深度伪造, 深度伪造定位, 多人场景图像, 小区域篡改, 面部掩码引导

Abstract:

To address the performance degradation and lack of robustness in existing forgery localization models when dealing with small region facial manipulations in multi-person scene images, a FMG-L model based on facial mask guidance for forgery localization is proposed. Firstly, to mitigate interference from background information in multi-person scene images, a facial mask guidance module is designed to encourage the model to focus on critical facial regions. Secondly, to enhance the robustness against image degradations, a three-channel feature extraction module is developed to extract multi-dimensional features, and a feature fusion module based on a dual attention network is also designed to enhance the forgery clues. Finally, a forgery localization module is used for forgery localization. Experimental results on the OpenForensics, ManulFake, FFIW, and DiffSwap datasets demonstrate that the FMG-L effectively localizes forgery regions and shows strong robustness against various image degradations and different online social platforms.

Key words: DeepFakes, DeepFake localization, multi-person scene images, small region manipulations, facial mask guidance

中图分类号: