1 |
Freeman W M, Walker S J, Vrana K E.Quantitative RT-PCR:pitfalls and potential[J].Biotechniques,1999,26(1):112-125.
|
2 |
叶端胜,华云松.基于深度学习的肺炎影像分割研究[J].软件工程与应用,2022(6):1490-1499.
|
|
Ye Duan‑sheng, Hua Yun‑song.Research on pneumonia image segmentation based on deep learning[J].Software Engineering and Applications,2022(6):1490-1499.
|
3 |
Khan A I, Shah J L, Bhat M M.CoroNet:a deep neural network for detection and diagnosis of COVID-19 from chest X‑ray images[J].Computer Methods and Programs in Biomedicine,2020,196:105581.
|
4 |
Chollet F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1251-1258.
|
5 |
Wang S, Zha Y F, Li W M,et al.A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis[J].European Respiratory Journal,2020,56(2):2000775.
|
6 |
Huang G, Liu Z, Van Der Maaten L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:4700-4708.
|
7 |
Lin T Y, Dollár P, Girshick R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2117-2125.
|
8 |
Wu Z F, Shen C H, Van Den Hengel A.Wider or deeper:revisiting the ResNet model for visual recognition[J].Pattern Recognition,2019,90:119-133.
|
9 |
Li L, Qin L X, Xu Z G,et al.Using artificial intelligence to detect COVID-19 and community‑acquired pneumonia based on pulmonary CT:evaluation of the diagnostic accuracy[J].Radiology,2020,296(2):65-71.
|
10 |
Lucas M, Lerma M, Furst J,et al.RSI-Grad-CAM:visual explanations from deep networks via Riemann‑Stieltjes integrated gradient‑based localization[C]// International Symposium on Visual Computing.Cham:Springer,2022:262-274.
|
11 |
Tiwari S, Jain A.Convolutional capsule network for COVID-19 detection using radiography images[J].International Journal of Imaging Systems and Technology,2021,31(2):525-539.
|
12 |
Quan H, Xu X S, Zheng T T,et al.DenseCapsNet:detection of COVID-19 from X‑ray images using a capsule neural network[J].Computers in Biology and Medicine,2021,133:104399.
|
13 |
Banerjee A, Bhattacharya R, Bhateja V,et al.COFE-Net:an ensemble strategy for computer‑aided detection for COVID-19[J].Measurement,2022,187:110289.
|
14 |
Xia X L, Xu C, Nan B.Inception-v3 for flower classification[C]//2017 2nd International Conference on Image,Vision and Computing (ICIVC).Chengdu,2017:783-787.
|
15 |
Ferreira C A, Melo T, Sousa P,et al.Classification of breast cancer histology images through transfer learning using a pre‑trained inception ResNet V2[C]// International Conference on Image Analysis and Recognition.Cham:Springer,2018:763-770.
|
16 |
Li J X, Wang Y Q, Wang S,et al.Multiscale attention guided network for COVID-19 diagnosis using chest X-ray images[J].IEEE Journal of Biomedical and Health Informatics,2021,25(5):1336-1346.
|
17 |
Fu J L, Zheng H L, Mei T.Look closer to see better:recurrent attention convolutional neural network for fine‑grained image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:4438-4446.
|
18 |
Srivastava N, Hinton G, Krizhevsky A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958.
|
19 |
Jaiswal A, Gianchandani N, Singh D,et al.Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning[J].Journal of Biomolecular Structure and Dynamics,2021,39(15):5682-5689.
|
20 |
Polsinelli M, Cinque L, Placidi G.A light CNN for detecting COVID-19 from CT scans of the chest[J].Pattern Recognition Letters,2020,140:95-100.
|
21 |
Lin T Y, Goyal P, Girshick R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2980-2988.
|
22 |
Li Y S, Chen Y P, Dai X Y,et al.Micronet:improving image recognition with extremely low flops[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal,2021:468-477.
|
23 |
Hu J, Shen L, Sun G.Squeeze‑and‑excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:7132-7141.
|
24 |
Woo S, Park J, Lee J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:3-19.
|