东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (6): 66-75.DOI: 10.12068/j.issn.1005-3026.2025.20240096

• 机械工程 • 上一篇    下一篇

基于迁移学习的NiCo-FGM机器人砂带磨削工艺

辛博, 李宏亮, 孙文鑫, 刘洺君   

  1. 东北大学 机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2023-08-27 出版日期:2025-06-15 发布日期:2025-09-01
  • 作者简介:辛 博(1988—),男,吉林通化人,东北大学副教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(52005093);中央高校基本科研业务费专项资金资助项目(N2203014);辽宁省科学技术计划项目(2023-MS-085)

Transfer Learning-Based Robotic Belt Grinding Process for NiCo-FGM

Bo XIN, Hong-liang LI, Wen-xin SUN, Ming-jun LIU   

  1. School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110819,China. Corresponding author: XIN Bo,E-mail: xinbo@me. neu. edu. cn
  • Received:2023-08-27 Online:2025-06-15 Published:2025-09-01

摘要:

为提高镍钴功能梯度材料(nickel-cobalt-functional gradient materials, NiCo-FGM)去除深度的一致性,采用自适应磨削力控制系统对5种不同质量分数IN718的NiCo-FGM进行恒力分区磨削实验,探究工艺参数对材料去除深度及表面粗糙度的影响趋势及程度.然后对迁移学习进行可行性分析并对比迁移学习与经验公式的去除深度建模精度.最后对比恒力与变力磨削的去除深度预测结果.结果表明:法向力对材料去除深度与表面粗糙度的影响最显著.迁移学习预测的平均误差降低了4.07%,且效率更高.恒力磨削下其余含量的IN718与50%IN718去除深度最大差值为8.955 μm,100%IN718与0%IN718去除深度最大差值为15.619 μm,而通过变力磨削可以提高去除深度一致性.

关键词: 镍钴功能梯度材料, 迁移学习, 去除深度一致性, 机器人砂带磨削, 自适应磨削力控制系统

Abstract:

In order to improve the removal depth consistency of nickel-cobalt functional gradient materials (NiCo-FGM), an adaptive grinding force control system was constructed to carry out constant force zonal grinding experiments on five types of NiCo-FGM with different mass fractions of IN718 to investigate the trend and extent of the influence of the process parameters on the removal depth and surface roughness of the materials. The feasibility of transfer learning was then analyzed and the accuracy of the removal depth modelling was compared with that of empirical formulas. Finally, comparing the removal depth prediction results of constant force and variable force grinding. The results showed that the normal force has the most significant effect on the removal depth and surface roughness of the materials. The average error in the prediction of transfer learning is reduced by 4.07%, and the efficiency is higher. The maximum difference in removal depth between the remaining content of IN718 and 50%IN718 under constant force grinding is 8.955 μm, and the maximum removal depth difference between 100%IN718 and 0%IN718 is 15.619 μm, whereas the removal depth consistency can be improved by variable force grinding.

Key words: nickel-cobalt functional gradient material (NiCo-FGM), transfer learning, removal depth consistency, robotic belt grinding, adaptive grinding force control system

中图分类号: