东北大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (3): 309-312.DOI: -

• 论著 • 上一篇    下一篇

基于RBF神经网络的汽车ABS滑模控制器的设计

毛艳娥;井元伟;曹一鹏;张嗣瀛;   

  1. 东北大学信息科学与工程学院;沈阳航空工业学院计算机学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2009-03-15 发布日期:2013-06-22
  • 通讯作者: Mao, Y.-E.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(50704012);;

Slip controller based on RBF neural network for automotive ABS

Mao, Yan-E (1); Jing, Yuan-Wei (1); Cao, Yi-Peng (2); Zhang, Si-Ying (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (2) School of Computer Science, Shenyang Institute of Aeronautical Engineering, Shenyang 110136, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2009-03-15 Published:2013-06-22
  • Contact: Mao, Y.-E.
  • About author:-
  • Supported by:
    -

摘要: 针对汽车防抱死制动系统(ABS)在快速性及鲁棒控制方面的要求,采用基于径向基函数神经网络的方法设计了汽车ABS的滑模控制器.该方法能够削弱常规滑模控制所引起的抖动现象,也能提高单纯的神经网络自适应控制的鲁棒性能.利用MATLAB中的SIMULINK仿真工具,对车辆在干路面条件下的制动情况进行了仿真研究,验证了所设计的控制方案在汽车ABS应用中的可行性和有效性.

关键词: 防抱死制动系统, 径向基函数神经网络, 滑模控制, 抖振, 鲁棒性

Abstract: The slip controller based on RBF neural network was designed for automotive anti-lock braking system (ABS) to meet the requirements that the braking process should be fast and robust and the chattering due to conventional slip control should be alleviated as possible. Moreover, the robustness of adaptive control system simply based on neural network can be improved to some extent if using the slip controller we designed. The simulation using the software MATLAB/SIMULINK was done to investigate vehicles' braking effects on dry road pavement, thus verifying the effectiveness and feasibility of the control scheme proposed.

中图分类号: