东北大学学报(自然科学版) ›› 2008, Vol. 29 ›› Issue (7): 932-935.DOI: -

• 论著 • 上一篇    下一篇

CASVFMM改进算法及其在景物分析中的应用

高立群;常兴治;   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳110004;辽宁沈阳110004;山东轻工业学院信息科学与技术学院;山东济南250100
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2008-07-15 发布日期:2013-06-22
  • 通讯作者: Gao, L.-Q.
  • 作者简介:-
  • 基金资助:
    黑龙江省自然科学基金资助项目(F0318)

Improved CASVFMM algorithm and its application in scenery image analysis

Gao, Li-Qun (1); Chang, Xing-Zhi (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (2) School of Information Science and Technology, Shandong Institute of Light Industry, Jinan 250100, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2008-07-15 Published:2013-06-22
  • Contact: Gao, L.-Q.
  • About author:-
  • Supported by:
    -

摘要: 对图像分割中的CASVFMM算法进行了改进.通过对原有势函数的修正,增加了势函数对像素特征的依赖性,使算法既保持了分割的连续性,又增强了分割收敛的稳定性.由此新算法在对不同类别图像的分割处理中,分割结果与原图像区域对应的一致性有明显增强.另外,对势函数的结构作了一定的修正,加快了算法的收敛速度,增强了算法收敛时分割结果的合理性.通过在MIT标准图像集上的景物分析仿真实验,对比说明了新算法较之CASVFMM算法改进的有效性,为其他图像分析应用提供了一种有效的分割方法.

关键词: Markov随机场, 图像分割, EM算法, 景物分析, 聚类分割

Abstract: Introduces a newly improved method into scenery image segmentation, based on the CASVFMM (class-adaptive spatially variant finite mixture model) algorithm. By modifying the original potential function to strengthen the dependence of potential function on image pixel features, the segmentation continuity can be kept on with enhanced convergence stability. Thus, the segmented results obviously further conform to the corresponding image regions when the new algorithm is applied to the segmentation of images of different classes. Moreover, the structure expression of potential function is modified to a certain degree so as to accelerate the convergence rate of the algorithm and enhance the reasonableness of the segmented results when the algorithm comes into convergence. The simulation tests for scenery image analysis of the MIT standard image sets reveal comparatively that the newly improved algorithm is more efficient than the original CASVFMM and it is also available to other image analyses.

中图分类号: