东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (2): 193-199.DOI: 10.12068/j.issn.1005-3026.2020.02.008

• 信息与控制 • 上一篇    下一篇

基于活动轮廓模型和影像组学的乳腺癌LVI状态预测

冯宝1,2, 李昌林3, 李智2, 刘壮盛3   

  1. (1. 中山大学 生物医学工程学院, 广东 广州511400; 2. 桂林航天工业学院 电子信息与自动化学院, 广西 桂林541004; 3. 中山大学附属江门市中心医院 放射科, 广东 江门529000)
  • 收稿日期:2018-12-21 修回日期:2018-12-21 出版日期:2020-02-15 发布日期:2020-03-06
  • 通讯作者: 冯宝
  • 作者简介:冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.冯宝 (1986-),男,山西太原人,中山大学博士后研究人员; 李智 (1965-),男,广西桂林人,桂林航天工业学院教授,博士生导师.
  • 基金资助:
    广西壮族自治区自然科学基金资助项目(2016GXNSFBA380160); 广西壮族自治区千名中青年骨干教师培育计划项目 (2018GXQGFB160); 国家自然科学基金地区科学基金资助项目(81960324).

Breast Cancer Related LVI Status Prediction Based on Active Contour Model and Radiomics

FENG Bao1,2, LI Chang-lin3, LI Zhi2, LIU Zhuang-sheng3   

  1. 1. School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 511400, China; 2. School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China; 3. Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529000, China.
  • Received:2018-12-21 Revised:2018-12-21 Online:2020-02-15 Published:2020-03-06
  • Contact: LI Zhi
  • About author:-
  • Supported by:
    -

摘要: 针对乳腺癌患者术前LVI状态预测问题,提出了活动轮廓模型和影像组学相结合的计算机辅助分析方法.首先,提出一种基于后验概率和模糊速度函数的活动轮廓模型方法来完成乳腺癌DCE-MRI图像分割.通过在小波域下构建基于后验概率的活动轮廓模型的区域项,同时利用模糊速度函数构建活动轮廓模型的边界项,可以提高乳腺癌病灶分割的准确性.其次,提取形态、灰度、纹理等图像特征,利用集成分类器随机森林方法构造LVI状态的预测模型.实验结果表明,所构建的模型对乳腺癌患者LVI状态具有较好的预测能力.

关键词: DCE-MRI, 乳腺癌, 活动轮廓模型, 影像组学, 图像分割, 图像分类

Abstract: To predict preoperative lymphovascular invasion(LVI)status of breast cancer patients, a computer-aided analysis method which combines an active contour model and radiomics is proposed. First, the image from dynamic contrast enhanced magnetic resonance imaging(DCE-MRI)of breast cancer is segmented by an active contour model(ACM)based on post probability and fuzzy velocity function. By constructing the region term of the active contour model based on post probability in the wavelet domain and the edge stop term of the active contour model by using the fuzzy velocity function, the accuracy of breast cancer lesion segmentation can be improved. Second, the image features such as morphology, grayscale and texture are extracted. Finally, a model for predicting LVI status is developed by the random forest classifier and its predictive ability is verified by experimental results.

Key words: DCE-MRI, breast cancer, active contour model, radiomics, image segmentation, image classification

中图分类号: