东北大学学报(自然科学版) ›› 2003, Vol. 24 ›› Issue (3): 241-243.DOI: -

• 论著 • 上一篇    下一篇

钢铁企业产成品预报模型

刘士新;宋健海;唐加福;王梦光   

  1. 东北大学信息科学与工程学院;上海宝信软件股份有限公司;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳110004
  • 收稿日期:2013-06-23 修回日期:2013-06-23 出版日期:2003-03-15 发布日期:2013-06-23
  • 通讯作者: Liu, S.-X.
  • 作者简介:-
  • 基金资助:
    国家“八六三”高技术计划CIMS主题资助项目 ( 2 0 0 2AA412 0 10 ) ;;

Modelling for finished product forecasting in iron-steel enterprise

Liu, Shi-Xin (1); Song, Jian-Hai (2); Tang, Jia-Fu (1); Wang, Meng-Gang (1)   

  1. (1) Sch. of Info. Sci. and Eng., Northeastern Univ., Shenyang 110004, China; (2) Baosteel Info. Indust. Co. Ltd., Shanghai 201900, China
  • Received:2013-06-23 Revised:2013-06-23 Online:2003-03-15 Published:2013-06-23
  • Contact: Liu, S.-X.
  • About author:-
  • Supported by:
    -

摘要: 基于某钢铁企业整体产销系统的合同跟踪策略和实现方法 ,利用SAS/EnterpriseMiner软件提供的SEMMA过程 ,对冷轧生产线上产成品的产出规律进行了探索 ,建立了产成品预报的神经网络模型·模型以合同在生产线上最后几道工序的通过日期和通过时间为输入 ,以合同的完成日期为输出·利用SAS/EnterpriseMiner软件提供的神经网络功能进行了大量的试验 ,结果表明神经网络模型是进行产成品预报的有效方法 ,预报精度可达到 91 %以上·试验中也发现 :隐层节点激活函数形式对预测效果有一定影响 ,而隐层节点数对预测效果影响程度较小 ;数据噪声对预测效果有一定的影响

关键词: 钢铁企业产成品预报, 神经网络, 企业数据挖掘, SAS

Abstract: Based on the order tracking strategy and the implementing approaches in the Integrated Production/Distribution System in an iron-steel enterprise, the product output rule in cool-rolling product line was explored using the SEMMA process of SAS/Enterprise Miner software. An artificial neural-network model for forecasting product output was built. In this forecasting model, release date and time of order at the last several processes in product line were taken as inputs, and finish date of order was taken as output. A synthetic computation experiment with neural network function of SAS/Enterprise Miner shows that the neural network models are effective approaches for forecasting product output and the precision is up to 91%. The experiment also shows that the activation function type of hidden nodes has definite effect on performance, but the number of nodes in hidden layer has little effect on performance, and data noise has some effect on performance.

中图分类号: