东北大学学报(自然科学版) ›› 2007, Vol. 28 ›› Issue (3): 418-421.DOI: -

• 论著 • 上一篇    下一篇

基于神经网络的驾驶员觉醒水平双目标监测法

杨英;盛敬;杨佳;周巍;   

  1. 东北大学机械工程与自动化学院;东北大学机械工程与自动化学院;辽东学院装备与材料学院;东北大学机械工程与自动化学院 辽宁沈阳110004;辽宁沈阳110004;辽宁丹东118001;辽宁沈阳110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2007-03-15 发布日期:2013-06-24
  • 通讯作者: Yang, Y.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(10402008)

Double-objective detection based on neural network for driver's alert level

Yang, Ying (1); Sheng, Jing (1); Yang, Jia (2); Zhou, Wei (1)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China; (2) School of Equipment and Materials, Eastern Liaoning University, Dandong 118001, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2007-03-15 Published:2013-06-24
  • Contact: Yang, Y.
  • About author:-
  • Supported by:
    -

摘要: 在驾驶员疲劳状态单目标状态识别的基础上,提出了驾驶员嘴巴与眼睛状态双目标疲劳状态判别法.该方法将驾驶员眼睛和嘴巴的特征向量值按先后顺序,分别输入到修正的BP网络中,采用区域匹配算法,根据驾驶员疲劳状态量化评判标准,综合识别驾驶员的觉醒水平.采用VC++开发了驾驶员疲劳监测算法软件,并对驾驶员进行了监测仿真试验.结果表明,双目标监测系统能够实时、准确地监测和识别驾驶员的觉醒水平,具有较高的识别容错性和准确性.

关键词: 驾驶员觉醒水平, 双目标监测, 状态识别, 神经网络, 仿真

Abstract: Based on the single-objective detection, a double-objective detection is proposed for driver's alert level, i.e., the states and changes of both eyes and mouth of a driver are taken as the drowsy discriminance during monitoring a driver' s fatigue through his/her entire facial image when traveling. In this way both the characteristic vectors of eyes and lip of a driver are sequentially input into a modified BP network. Then, the region matching algorithm is introduced to detect comprehensively the alert level of a driver in accordance to the quantified evaluation indices showing how he/she is feeling fatigued. VC++ is used to develop an algorithm software to monitor driver' s fatigue, with which a simulation test is carried out. Test results show that the proposed double-objective detection system can monitor and identify accurately a driver' s alert level with high fault tolerance provided.

中图分类号: