东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (12): 1174-1177.DOI: -
王黎;于涛;闻邦椿;
Wang, Li (1); Yu, Tao (1); Wen, Bang-Chun (1)
摘要: 提取脑电信号(EEG)的α波并计算其三种非线性参数,在此基础上归纳出用于评估人体疲劳状态的综合判据.首先,在小波变换的基础上,从原始信号中提取EEG的α波,然后计算其最大李亚普诺夫指数、复杂度和近似熵.这些非线性参数的数值可以定量地反映人的生理活动,进而可以用于评价疲劳状态.对现有EEG数据进行计算和统计,归纳出建立在上述三种非线性参数基础上的疲劳状态的综合评估判据.针对18组已知数据,采用上述综合判据得到相应的不同状态的判定结果.与实际情况相对照,对疲劳和非疲劳状态的评估准确率接近100%,但对轻微、中等和严重疲劳状态之间的区分精度稍低一些.
中图分类号: