东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (4): 470-479.DOI: 10.12068/j.issn.1005-3026.2022.04.003

• 信息与控制 • 上一篇    下一篇

基于自适应感知金字塔网络的图像去雨

杨爱萍, 王朝臣, 王建, 张腾飞   

  1. (天津大学 电气自动化与信息工程学院, 天津300072)
  • 修回日期:2021-05-14 接受日期:2021-05-14 发布日期:2022-05-18
  • 通讯作者: 杨爱萍
  • 作者简介:杨爱萍(1977-),女,山东聊城人,天津大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(62071323,61771329,61632018); 天津市科技重大专项研发计划项目(18ZXZNGX00320).

Image Deraining Based on Adaptive Perceptual Pyramid Network

YANG Ai-ping, WANG Chao-chen, WANG Jian, ZHANG Teng-fei   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072,China.
  • Revised:2021-05-14 Accepted:2021-05-14 Published:2022-05-18
  • Contact: YANG Ai-ping
  • About author:-
  • Supported by:
    -

摘要: 基于深度学习的单幅图像去雨已经取得了较大进展,但现有方法去雨后的图像仍然存在细节丢失、密集雨纹去除不彻底等问题.为此,本文提出一种基于自适应感知金字塔网络的单幅图像去雨方法,能够在有效去除密集雨纹的同时对细节进行修正,显著改善去雨图像的视觉质量.首先,基于小波变换构建多尺度金字塔网络,在各尺度子网络之间进行递进式连接,实现雨纹迭代提取和去除;各尺度子网络内部以自适应雨纹感知模块为核心,设计对称跳跃连接将提取到的浅层特征反馈至深层,实现浅层特征的有效复用.其中,所设计的自适应雨纹感知模块通过非局部感知运算和共享扩张卷积扩大感受野,可有效感知雨纹特征,并融入注意力机制实现雨纹的自适应去除.为了更好地约束网络训练和去除不同尺度的雨纹,设计了一种多尺度损失函数,由粗及细逐步完成雨纹去除,可有效防止伪影现象.在合成和真实数据集上的大量实验表明,本文方法优于现有的主流方法,能够在去雨的同时较好地保持图像细节,视觉效果理想.

关键词: 图像去雨;小波变换;金字塔网络;自适应感知;特征融合

Abstract: Although deep learning-based methods have made great progresses in the field of single image deraining, existing methods still have some problems such as loss of detail and residue of rain streaks. To overcome these short-comings, this paper proposed an adaptive perceptual pyramid network to remove dense rain streaks while revising image details at the same time and thus significantly improve the visual quality. Firstly, a multi-scale pyramid network with progressive connected sub-networks is constructed based on wavelet transform to extract and remove rain streaks iteratively. Each sub-network with the adaptive rain streak perceptual block as its core module is constructed through symmetric skip-connection to extract the shallow layer features to deeper layers to be reused. The adaptive rain streak perceptual block uses non-local operation and shared dilated convolution to expand the receptive fields, which can effectively perceive and remove rain streak adaptively. In order to remove rain streaks with different scales and impose some constrains of the network training, a multi-scale loss function is designed so as to gradually remove rain streaks from coarse to fine, which can effectively prevent artifacts. Extensive experimental results on synthetic and real datasets demonstrate the superiority of the proposed method over the state-of-the-art methods, which can remove rain streaks effectively with preserving vivid image details.

Key words: image deraining; wavelet transform; pyramid network; adaptive perception; feature fusion

中图分类号: