东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (9): 856-859.DOI: -

• 论著 • 上一篇    下一篇

通过精练查询空间改善高维数据的相似性查询

周项敏;赵相国;王国仁   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2005-09-15 发布日期:2013-06-24
  • 通讯作者: Zhou, X.-M.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60273039,60473074)

Improving similarity search of multidimensional data by reducing query space

Zhou, Xiang-Min (1); Zhao, Xiang-Guo (1); Wang, Guo-Ren (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2005-09-15 Published:2013-06-24
  • Contact: Zhou, X.-M.
  • About author:-
  • Supported by:
    -

摘要: 提出了一种新的高维查询空间过滤策略,通过将高维数据动态投影到低维的数据空间中,然后在投影空间中对查询空间进一步过滤,精练并快速缩小查询空间.同时提出了一种有效的投影策略基于最大间隔投影,这种投影策略能够提高投影空间的精练能力.而且,设计了一种新的高维索引结构MS-tree,并将新的过滤策略运用于MS-tree的范围查询.实验结果表明,这种查询空间精练策略能够有效的提高索引的性能,降低相似性查询的IO代价和CPU代价.

关键词: 高维索引, 精练查询空间, 假有效子空间, 相似性查询, 空间投影

Abstract: To perform the query in a high dimensional query space, a novel filtering strategy is proposed. Projecting the high dimensional data into a low dimensional space and filtering the query space in the projected space, the query space is reduced and shrunk quickly. At the same time, an effective projecting strategy is proposed to enhance the reducibility of low dimensional space. Moreover, a new indexing structure or MS-tree is designed with a new filtering strategy applied to the range query of ML-tree. Experimental results show that reducing query space can improve the indexing performance effectively and reduce the cost for IO and CPU.

中图分类号: