东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (7): 625-628.DOI: -

• 论著 • 上一篇    下一篇

一种多分辨率DOA估计的小波包算法

薛延波;汪晋宽;刘志刚;李鸿杰   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳 110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2005-07-15 发布日期:2013-06-24
  • 通讯作者: Xue, Y.-B.
  • 作者简介:-
  • 基金资助:
    教育部科学技术重点项目(02085)

Novel multiresolution DOA estimation method with wavelet packets

Xue, Yan-Bo (1); Wang, Jin-Kuan (1); Liu, Zhi-Gang (1); Li, Hong-Jie (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2005-07-15 Published:2013-06-24
  • Contact: Xue, Y.-B.
  • About author:-
  • Supported by:
    -

摘要: 根据MUSIC算法在信号波达方向(DOA)较近或相干时性能迅速下降的情况,提出了一种多分辨率信号波达方向估计的小波包算法基于子带分解的MUSIC算法(SB MUSIC)·算法对全带信号进行子带分解,并根据最优基选取准则选择最优叶节点,然后对每个叶节点应用MUSIC算法进行谱估计·研究表明子带分解具有提高信噪比(SNR)和放大频率间隔等优点·考虑到算法应用时只有全带频率才有意义,提出了子带频率向全带频率映射的方法·仿真证明,SB MUSIC不仅提高了特征子空间方法的分辨率,而且在子带划分适当时,具有一定的信号去相关能力,并且子带谱的估计成功率和谱平度都高于全带谱·

关键词: DOA估计, MUSIC算法, 小波包, 频率映射, 谱平度

Abstract: A novel wavelet packets-based DOA (direction of arrival) estimation method is proposed for the rapid performance degradation of typical multiple signal classification (MUSIC) algorithm in the scenario where different signals' DOA are close together even coherent, i.e., the subband-based MUSIC algorithm (SB-MUSIC). The SB-MUSIC decomposes the fullband signal into subbands and chooses the optimal leaf nodes in accordance to the best basis criterion. Then, the MUSIC method is applied to every leaf node chosen so as to estimate individually the subband spectrum. The advantages of subband spectra, such as improving SNR and amplifying frequency spacing, are analyzed taking account of that when using SB-MUSIC only the fullband makes sense, thus giving a way for frequency mapping from subband back to fullband. Simulation results showed that SB-MUSIC will not only improve the resolution of classical eigenstructure-based methods but also decouple the coherent signals if the fullband is properly decomposed into subbands. In particular, the rate of success of estimation and spectral flatness measure (SFM) of subband are obviously higher than that of fullband.

中图分类号: