东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (1): 243-246.DOI: -

• 论著 • 上一篇    下一篇

单纯形空间中的四元数分形集的构造与分析

于海;徐喆;朱伟勇   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳 110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2005-01-15 发布日期:2013-06-24
  • 通讯作者: Zhu, W.-Y.
  • 作者简介:-
  • 基金资助:
    教育部博士点专项科研基金资助项目(20030145030)

Construction and analysis of quaternion fractal set in a simplex space

Yu, Hai (1); Xu, Zhe (1); Zhu, Wei-Yong (1)   

  1. (1) Sch. of Info. Sci. and Eng., Northeastern Univ., Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2005-01-15 Published:2013-06-24
  • Contact: Zhu, W.-Y.
  • About author:-
  • Supported by:
    -

摘要: 应用逃逸时间算法,在高维动力空间中利用四元数及其性质构造了一系列Mandelbrot和Julia集,并对四元数M集的界做出了估计·通过单纯形坐标体系下的投影变换,得到了四维Bannach空间与三维Euclid空间的对应关系,并应用这一对应关系得到了四元数M集与J集在三维空间中的映像·为分形理论在多维动力系统的研究与发展,提供了一个有益的探讨和尝试·

关键词: 分形理论, 单纯形, 四元数, Banach空间, 投影变换, 逃逸时间算法

Abstract: The paper uses the escape-time algorithm to construct a series of M-J sets and estimates the boundary of the M set of the quaternion, based on the characteristics of quaternion in higher dimensional dynamic space. The corresponding relationship between 4-D Bannach space and 3-D Euclid space is given through a projection transform in simplex coordinate system and, further, the relationship is used to get the mapping of the M-J set of quaternion in a 3-D space. A constructive exploration and trial pre thus provided for the research and development of fractal theory in multidimensional dynamic space.

中图分类号: