东北大学学报(自然科学版) ›› 2012, Vol. 33 ›› Issue (10): 1457-1460.DOI: -

• 论著 • 上一篇    下一篇

机械结构随机响应统计矩的计算方法

黄贤振;张义民;吴建新;张奎晓;   

  1. 东北大学机械工程与自动化学院;山东铁正工程试验检测中心有限公司;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 出版日期:2012-10-15 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(51105062,51135003)

Computation method of statistical moments of random response for mechanical structures

Huang, Xian-Zhen (1); Zhang, Yi-Min (1); Wu, Jian-Xin (2); Zhang, Kui-Xiao (1)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; (2) Shandong Tiezheng Project Experiment and Inspection Center Co. Ltd., Jinan 250014, China
  • Received:2013-06-19 Revised:2013-06-19 Online:2012-10-15 Published:2013-04-04
  • Contact: Huang, X.-Z.
  • About author:-
  • Supported by:
    -

摘要: 提出了一种计算具有不确定参数(随机载荷、材料、几何尺寸)的机械结构随机响应统计矩的实用方法.采用Chebyshev多项式节点划分基本随机变量水平,开展实验设计.利用Chebyshev多项式拟合机械结构随机响应与基本随机变量的函数关系,使用降维积分技术求解机械结构随机响应的概率统计矩.数字算例表明所提方法具有较高的计算效率和求解精度,通用性强,可以用于复杂机械结构随机响应的概率分析中.

关键词: 机械结构, 统计矩, 不确定参数, Chebyshev多项式, 降维法

Abstract: To compute the statistical moments of the random response for mechanical structures subject to loads, material and geometry, a method was proposed. The basic random variables were discretized by the Chebyshev nodes to obtain discrete experimental samples. Then the Chebyshev approximation theory was applied to approximate the relationship of the random response-variables. The statistical moments of the random response were computed with the dimension-reduction method for multi-dimensional integration. Finally, a practical engineering case was used to demonstrate the generality and effectiveness of the proposed method.

中图分类号: