东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (9): 1229-1232.DOI: -

• 论著 • 上一篇    下一篇

量子行为粒子群优化算法在几何约束问题上的应用

曹春红;唐川;赵大哲;张斌;   

  1. 东北大学信息科学与工程学院;成都理工大学地质灾害防治与地质环境保护国家重点实验室;东北大学医学影像计算教育部重点实验室;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N100404002);;

Application of the quantum particle swarm optimization approach in the geometric constraint problems

Cao, Chun-Hong (1); Tang, Chuan (2); Zhao, Da-Zhe (3); Zhang, Bin (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (2) State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; (3) Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang 110819, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Cao, C.-H.
  • About author:-
  • Supported by:
    -

摘要: 几何约束问题可以等价为求解非线性方程组问题,同时也可以将几何约束问题转化为一个优化问题来求解.受经典粒子群优化算法和量子动力学启发,提出一种新的算法——量子行为粒子群优化算法(QPSO)来求解几何约束问题.在QPSO模型里,粒子的状态不再通过位置和速度来决定,而是通过一个波函数来确定.这种算法的主要优点就是可以在感兴趣的问题上保持种群的多样性.实验结果表明,该方法可以提高几何约束求解的效率和收敛性.

关键词: 几何约束求解, 粒子群优化算法, 量子行为粒子群优化算法, 波函数, 种群

Abstract: Geometric constraint problem is equivalent to the problem of solving a set of nonlinear equations, and the constraint problem can be transformed into an optimization problem. Inspired by the classical PSO method and quantum mechanics theory, this paper presents a novel quantum-behaved PSO (QPSO) to solve geometric constraint problems. In the QPSO model, the state of a particle is depicted by a wave function instead of position and velocity. The advantage of the algorithm is that it can maintain the diversity of the population in the interested problems. The experimental result shows that the algorithm can improve efficiency and convergence of the geometric constraint solutions.

中图分类号: