东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (2): 158-163.DOI: 10.12068/j.issn.1005-3026.2017.02.002

• 信息与控制 • 上一篇    下一篇

基于改进支持向量机的永磁驱动器设计

李召, 王大志   

  1. (东北大学 信息科学与工程学院, 辽宁 沈阳110819)
  • 收稿日期:2015-05-22 修回日期:2015-05-22 出版日期:2017-02-15 发布日期:2017-03-03
  • 通讯作者: 李召
  • 作者简介:李召(1987-),男,河南驻马店人,东北大学博士研究生; 王大志(1963-),男,辽宁锦州人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61433004); 中央高校基本科研业务费专项资金资助项目(N150403005, L1504011).

Design of Permanent Magnet Drive Based on Improved Support Vector Regression

LI Zhao, WANG Da-zhi   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
  • Received:2015-05-22 Revised:2015-05-22 Online:2017-02-15 Published:2017-03-03
  • Contact: LI Zhao
  • About author:-
  • Supported by:
    -

摘要: 将多输出支持向量机回归方法与模糊化理论相结合,提出一种永磁驱动器的设计方法.首先,引入空间粒子群优化算法对合成核多输出支持向量回归模型参数进行寻优,在此基础上通过实验法建立了永磁驱动器的性能与结构参数的多目标回归模型;然后,运用模糊理论将多目标转化为单目标,建立了设计问题的数学模型并利用空间粒子群算法进行求解;最后,通过模型精度分析以及ANSYS仿真和样机的测试,验证了该方法的有效性.

关键词: 多输出支持向量机, 模糊理论, 空间粒子群算法, 永磁驱动器, 多目标设计

Abstract: The multi-output support vector regression with composite kernel and the fuzzy theory were applied to design permanent magnet drive. In this method, the space particle swarm optimization (SPSO) algorithm was firstly introduced to obtain the most appropriate parameter of the multi-output support vector regression with composite kernel model. In addition, through the experiment the regression model between performances and structure parameters of permanent magnet drive was established. Secondly, by using fuzzy theory, multi-objective problem was converted into single one, and the mathematical model of optimization problem was set up, which was solved by SPSO. Finally, precision analysis of model, ANSYS simulation and prototyping test were carried out, and the results verified the effectiveness of the proposed method.

Key words: multi-output support vector, fuzzy theory, space particle swarm optimization algorithm, permanent magnet drive, multi-objective design

中图分类号: