东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (8): 1103-1107.DOI: 10.12068/j.issn.1005-3026.2018.08.008

• 信息与控制 • 上一篇    下一篇

基于二分网络社团划分的推荐算法

陈东明, 严燕斌, 黄新宇, 王冬琦   

  1. (东北大学 软件学院, 辽宁 沈阳110169)
  • 收稿日期:2017-03-30 修回日期:2017-03-30 出版日期:2018-08-15 发布日期:2018-09-12
  • 通讯作者: 陈东明
  • 作者简介:陈东明(1968-),男,安徽怀宁人,东北大学教授.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    辽宁省自然科学基金资助项目(20170540320); 辽宁省教育厅科学研究项目(L20150167).国家自然科学基金资助项目(51171041).

Recommendation Algorithm Based on Community Detection in Bipartite Networks

CHEN Dong-ming, YAN Yan-bin, HUANG Xin-yu, WANG Dong-qi   

  1. School of Software, Northeastern University, Shenyang 110169, China.
  • Received:2017-03-30 Revised:2017-03-30 Online:2018-08-15 Published:2018-09-12
  • Contact: HUANG Xin-yu
  • About author:-
  • Supported by:
    -

摘要: 传统的基于用户的协同过滤(User-based CF)推荐算法的推荐效率随着数据的不断增加而降低.本文在User-based CF算法中引入二分网络社团发现理论,提出一种基于二分网络社团划分的推荐算法(RACD).首先通过用户与项目之间的关系建立用户-项目二分网络,然后通过RACD对该网络进行社团划分,得到用户的社团信息,最后通过同一社团中的其他用户对目标用户进行项目的推荐.在经典网络数据集上的实验结果表明,RACD能够有效提高推荐系统实时推荐效率.

关键词: 推荐算法, 二分网络, 社团划分, 协同过滤, 复杂网络

Abstract: The efficiency of traditional user-based collaborative filtering (user-based CF) recommendation algorithm is reduced with data increasing. This paper proposes a recommendation algorithm based on community detection (RACD) in bipartite networks by introducing bipartite network community detection theory into user-based CF recommendation algorithm. Firstly, the user-item rating matrix is mapped into user-item bipartite network. Then, the community information of each user is obtained by using RACD to divide the user-item network. Finally, the items are recommended to the target user according to other users in the same community. Experiments on real-world classic network datasets show that the RACD can effectively improve real-time recommendation efficiency of the recommendation system.

Key words: recommendation algorithm, bipartite network, community detection, collaborative filtering, complex network

中图分类号: