东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (3): 359-367.DOI: 10.12068/j.issn.1005-3026.2022.03.008
丁来旭, 刘洪娟
DING Lai-xu, LIU Hong-juan
摘要: 网络表示学习可以有效解决推荐面临的数据稀疏问题.本文对网络表示学习中LINE算法和DeepWalk算法进行改进,提出混合推荐算法并应用于电影推荐场景.该算法通过学习用户喜好特征、厌恶特征和相似用户特征,生成三个低维特征向量.将三个低维特征向量线性组合拼接成用户表示向量,以余弦相似度作为相似性指标,将相似用户关联的电影推荐给目标用户,实现电影推荐.实验结果表明,所提出的推荐算法相较于次优算法,在MovieLens数据集上的准确率和F1指标分别提升12%和7%,在MovieTweetings数据集上的准确率和F1指标分别提升16%和18%.本文提出的基于多维特征表示学习的推荐算法在电影推荐类场景中,具有显著的优越性.
中图分类号: