东北大学学报:自然科学版 ›› 2014, Vol. 35 ›› Issue (5): 655-658.DOI: 10.12068/j.issn.1005-3026.2014.05.011

• 信息与控制 • 上一篇    下一篇

基于改进HMM模型的组合服务故障诊断方法

印莹,李明,赵宇海,张斌   

  1. (东北大学 信息科学与工程学院, 辽宁 沈阳110819)
  • 收稿日期:2007-05-24 修回日期:2007-05-24 出版日期:2014-05-15 发布日期:2014-08-18
  • 通讯作者: 印莹
  • 作者简介:印莹(1980-),女,辽宁铁岭人,东北大学副教授;张斌(1964-),男,辽宁本溪人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61100028,61272182,61073062,61100027);新世纪优秀人才支持计划项目(NCET-11-0085);教育部博士点新教师基金资助项目(20110042120034).

Effective Fault Diagnosis Method for Composite Web Services Based on Improved HMM Model

YIN Ying, LI Ming, ZHAO Yuhai, ZHANG Bin   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
  • Received:2007-05-24 Revised:2007-05-24 Online:2014-05-15 Published:2014-08-18
  • Contact: YIN Ying
  • About author:-
  • Supported by:
    -

摘要: 针对现有组合Web服务诊断模型故障诊断准确率普遍不高的问题,提出一种新颖的基于改进隐马尔可夫模型(Improved-HMM)的故障诊断方法.首先,从组合服务监测数据中提取多维特征序列训练HMM模型.训练过程中,考虑到基于BW的方法仅在某观测条件下进行参数评估,获得的参数准确度不高,提出基于贝叶斯估计的学习方法,得到更客观的参数;进一步,基于改进的HMM模型计算当前特征序列对应的各类故障类型发生概率,推断最有可能的故障类型.实验结果表明,提出的方法具有较高的诊断率和较低的漏报率,适合在网络环境中进行实时故障检测.

关键词: 隐马尔科夫模型, 组合Web服务, 故障诊断, 贝叶斯估计, 特征序列

Abstract: To address the problem that most of the existing composite Web service models are of low accuracy on fault disgnosis, a novel composite Web service oriented fault diagnosis approach was proposed based on an improved hidden Markov model (IHMM). Firstly, HMM model was trained by using the processed multidimensional feature sequences. In this process, the BWbased methods were not used for parameters estimation, since inaccurate parameters would often resulted in due to the single observation. Instead, a Bayes estimation based method to gain more objective paratemeters was proposed. Finally, the probabilities of different fault types caused by the current feature sequence were computed. The one of the maximum probability was inferred as the ultimate fault type. Experimental results showed that the method was effective and efficent. Due to the high diagnostic rate and the low false rate, it was suitable for realtime fault detection in network environment.

Key words: HMM(hidden Markov model), composite Web services, fault diagnosis, Bayes estimation, feature sequences

中图分类号: