东北大学学报:自然科学版 ›› 2015, Vol. 36 ›› Issue (3): 448-452.DOI: 10.12068/j.issn.1005-3026.2015.03.032

• 管理科学 • 上一篇    下一篇

全要素生产率分析新方法:Fre-Primont指数

黄祎1, 孙广生1, 黄金枝2   

  1. (1. 东北大学 工商管理学院, 辽宁 沈阳110819; 2. 哈尔滨工程大学 经济管理学院, 黑龙江 哈尔滨150001)
  • 收稿日期:2014-01-15 修回日期:2014-01-15 出版日期:2015-03-15 发布日期:2014-11-07
  • 通讯作者: 黄祎
  • 作者简介:黄祎(1981-),男,福建邵武人,东北大学讲师,博士.
  • 基金资助:
    国家自然科学基金资助项目(71173034,71271064,71303037); 中央高校基本科研业务费专项资金资助项目(N130406009); 黑龙江省自然科学基金资助项目(G201201); 哈尔滨工程大学基础研究基金资助项目(HEUFT12002).

New Method for Total Factor Productivity Analysis: Fre-Primont Index

HUANG Yi1, SUN Guang-sheng1, HUANG Jin-zhi2   

  1. 1. School of Business & Administration, Northeastern University, Shenyang 110819, China; 2. School of Economics and Management, Harbin Engineering University, Harbin 150001, China.
  • Received:2014-01-15 Revised:2014-01-15 Online:2015-03-15 Published:2014-11-07
  • Contact: HUANG Yi
  • About author:-
  • Supported by:
    -

摘要: 针对全要素生产率现有分析方法中存在的问题,基于全要素生产率的定义,引入Fre-Primont指数,并对其性质和分解进行了介绍.首先,以距离函数为加总函数构造出Fre-Primont指数,并证明该指数满足乘法完备性和传递性;其次,结合相关效率概念的经济学内涵,将Fre-Primont指数完全分解为技术进步、技术效率变化、规模效率变化与剩余混合效率变化的乘积;最后,利用该指数对我国29个省区2001年~2010年的全要素生产率进行了实证分析.

关键词: 全要素生产率, 加总函数, 技术效率, 规模效率, 剩余混合效率

Abstract: To overcome the shortcomings of Malmquist index, Fre-Primont index was introduced on the basis of the total factor productivity definition. The properties and decomposition of total factor productivity were also discussed. Firstly, Fre-Primont index was developed with distance function as the aggregate function, and this index also exhibited multiplicative completeness and satisfied transitivity test. Then, with the economic connotations of related efficiencies, Fre-Primont index was decomposed into the product of technology progress, technical efficiency change, scale efficiency change and residual mix efficiency change completely. Finally, the total factor productivities of 29 provinces in China from 2001 to 2010 were studied empirically by using Fre-Primont index.

Key words: total factor productivity, aggregate function, technical efficiency, scale efficiency, residual mix efficiency

中图分类号: