东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (6): 775-780.DOI: 10.12068/j.issn.1005-3026.2016.06.004

• 信息与控制 • 上一篇    下一篇

基于马尔科夫模型和贝叶斯定理的Web用户浏览行为预测模型

毕猛1,2, 侯林1, 倪盼3, 周福才1   

  1. (1. 东北大学 软件学院, 辽宁 沈阳110169; 2. 沈阳工业大学 管理学院, 辽宁 沈阳110023;3. 东北大学 计算机科学与工程学院, 辽宁 沈阳110819)
  • 收稿日期:2015-04-09 修回日期:2015-04-09 出版日期:2016-06-15 发布日期:2016-06-08
  • 通讯作者: 毕猛
  • 作者简介:毕猛 (1982-),男,辽宁沈阳人, 东北大学博士研究生,沈阳工业大学工程师; 周福才(1964-),男,吉林长春人,东北大学教授,博士生导师.
  • 基金资助:
    国家科技重大专项(2013ZX03002006); 辽宁省科技攻关项目(2013217004); 辽宁省博士启动基金资助项目(20141012); 沈阳市科技计划项目(F14-231-1-08); 中央高校基本科研业务费专项资金资助项目(N130317002).

Users’ Web Browsing Behavior Prediction Model Based on Markov Model and Bayesian Theorem

BI Meng1,2, HOU Lin1, NI Pan3, ZHOU Fu-cai1   

  1. 1. Software College, Northeastern University, Shenyang 110169, China; 2. Management College, Shenyang University of Technology, Shenyang 110023, China; 3. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China.
  • Received:2015-04-09 Revised:2015-04-09 Online:2016-06-15 Published:2016-06-08
  • Contact: ZHOU Fu-cai
  • About author:-
  • Supported by:
    -

摘要: 对用户的Web浏览行为进行分析,既可以使用户减少等待时间,同时也能减轻网络负载.依据Web网站的层次结构特点,首先设计了基于Hash表的反向索引结构来提高数据的预处理速度;在此基础上,利用分层思想构建了基于马尔科夫模型和贝叶斯定理的Web用户浏览行为预测模型.给出了模型的设计思想、相关定义、模型框架以及模型中所涉及的关键构建方法等.最后,对模型进行了实验分析,结果表明在适当的预测准确率前提下,模型能够有效减少在预测时所需的候选网页数量,并大幅提升预测效率.

关键词: Web站点, 用户浏览行为预测, 马尔科夫模型, 贝叶斯定理

Abstract: According to the novel aspect of natural hierarchical property of Web site, the inverted index structure was proposed based on Hash table (IIS-HT) to promote the speed of data preprocessing. Based on IIS-HT, a prediction model was also proposed which was based on statistics to predict users’ browsing behavior. The design idea, definition, framework and key construction methods of the model were also given. Finally, the proposed model was tested with real data. The experimental results show that the model and prediction algorithm could reduce the scope of candidate pages and improve the speed of prediction with adequate accuracy.

Key words: Web site, users’ browsing behavior prediction, Markov model, Bayesian theorem

中图分类号: