东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (7): 927-931.DOI: 10.12068/j.issn.1005-3026.2017.07.004

• 信息与控制 • 上一篇    下一篇

基于多特征融合的图像区域几何标记

刘威, 遇冰, 周婷, 袁淮   

  1. (东北大学 研究院, 辽宁 沈阳110819)
  • 收稿日期:2016-01-01 修回日期:2016-01-01 出版日期:2017-07-15 发布日期:2017-07-07
  • 通讯作者: 刘威
  • 作者简介:刘威(1975-),男,辽宁沈阳人,东北大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(61273239); 中央高校基本科研业务费专项资金资助项目( N151802001).

Geometric Labeling of Image Regions Based on Combination of Multiple Features

LIU Wei, YU Bing, ZHOU Ting, YUAN Huai   

  1. Research Academy, Northeastern University, Shenyang 110819, China.
  • Received:2016-01-01 Revised:2016-01-01 Online:2017-07-15 Published:2017-07-07
  • Contact: LIU Wei
  • About author:-
  • Supported by:
    -

摘要: 提出一种基于多特征融合的图像区域几何标记方法.首先,提出了一种新型卷积网络结构——多尺度核卷积网络用于提取像素点的多尺度特征信息,推断像素点的几何类别,并结合图像超像素分割获得图像超像素区域的几何标记;其次,将提取的多尺度特征与超像素区域传统特征相结合,建立超像素区域的特征表达.最后,建立超像素图像的条件随机场(conditional random field, CRF)模型,对超像素区域的几何类别进行推断.在公开数据集Geometric Context(GC)上的实验结果表明,同已有算法相比,所提方法提高了图像区域几何标记的准确率.

关键词: 多特征融合, 多尺度核卷积网络, 图像区域几何标记, 特征学习, 条件随机场模型

Abstract: A geometric labeling method of image regions was proposed based on combination of multiple features. First of all, according to the requirement of multi-scale feature information extraction, a novel network structure—multi-scale kernel convolutional network (MSKCN) was proposed. The multi-scale feature information was used for inferring geometric label of pixel. The geometric labeling of super-pixel regions with the image super-pixel segmentation was achieved. Then a feature representation of super-pixel regions was established by combining multi-scale features proposed and traditional features of super-pixel regions. Finally, a CRF(conditional random field) model was constructed for the super-pixel image to infer geometric label of super-pixel regions with the image super-pixel segmentation. The experiments on public database Geometric Context (GC) indicated that the accuracy of geometric labeling was improved by using the proposed method compared with the existing state-of-art.

Key words: combination of multiple features, multi-scale kernel convolutional network, geometric labeling of image regions, feature learning, conditional random field model

中图分类号: