东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (1): 77-81.DOI: 10.12068/j.issn.1005-3026.2019.01.015

• 机械工程 • 上一篇    下一篇

基于大数据和马尔科夫链的行驶工况构建

曹骞, 李君, 刘宇, 曲大为   

  1. (吉林大学 汽车仿真与控制国家重点实验室, 吉林 长春130022)
  • 收稿日期:2018-03-29 修回日期:2018-03-29 出版日期:2019-01-15 发布日期:2019-01-28
  • 通讯作者: 曹骞
  • 作者简介:曹骞(1986-),男,山东济南人,吉林大学博士研究生; 李君(1961-),男,吉林长春人,吉林大学教授,博士生导师.
  • 基金资助:
    中国新能源汽车产品检测工况研究和开发项目(工信部 工装函[2015]615号)

Construction of Driving Cycle Based on Big Data and Markov Chain

CAO Qian, LI Jun, LIU Yu, QU Da-wei   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China.
  • Received:2018-03-29 Revised:2018-03-29 Online:2019-01-15 Published:2019-01-28
  • Contact: LIU Yu
  • About author:-
  • Supported by:
    -

摘要: 为提高代表行驶工况的准确性,对行驶工况构建算法进行了研究.在沈阳市选取10辆乘用车并采用自主驾驶方式收集行驶数据,组建了大样本数据库.首先根据傅里叶变换对原始数据进行了降噪滤波,然后采用改进的Kneser-Ney平滑方法计算状态转移概率矩阵,提出了基于马尔科夫链的行驶工况构建算法,最后开发了沈阳市乘用车代表行驶工况,并将其与数据库总体特征进行对比.结果表明,构建工况与数据库总体的平均偏差为2.46%,所有特征参数偏差均在10%以内,验证了算法的有效性.

关键词: 行驶工况, 乘用车, 大样本, 马尔科夫链, 算法

Abstract: In order to improve the accuracy of typical driving cycle, the constructing algorithm for typical driving cycle was studied. 10 passenger cars in Shenyang City were selected to collect the driving data by autonomous driving, and the big sample database was established. Firstly, the raw data was filtered for noise reduction by using Fourier transform method. Secondly, the modified Kneser-Ney smoothing method was applied to compute the state transfer probability matrix, and the driving cycle constructing algorithm based on Markov chain was proposed. Finally, the typical driving cycle for passenger cars in Shenyang City was constructed and compared with the overall characteristics of the database. The results showed that the average deviation between the constructed cycle and the database population is 2.46%, the deviation values of all the characteristic parameters are within 10%, and the validness of the proposed algorithm is thus verified.

Key words: driving cycle, passenger car, big sample, Markov chain, algorithm

中图分类号: