东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (7): 1037-1046.DOI: 10.12068/j.issn.1005-3026.2024.07.016
王青原1,2,3, 许颖1,2,3, 钱胜1,2,3
收稿日期:
2022-10-11
出版日期:
2024-07-15
发布日期:
2024-10-29
作者简介:
王青原(1991-),女,河南洛阳人,哈尔滨工业大学(深圳)博士研究生.
基金资助:
Qing-yuan WANG1,2,3, Ying XU1,2,3, Sheng QIAN1,2,3
Received:
2022-10-11
Online:
2024-07-15
Published:
2024-10-29
摘要:
在试验表征及工程实践中,仿真可以准确反映裂缝的发展规律.采用内聚力模型来研究混凝土梁三点弯曲试验的宏观力学性能和细观开裂损伤破坏行为.在三点弯曲试验中的受力破坏的全过程研究中,对I型断裂能、II型断裂能、抗剪强度、抗拉强度及弹性模量(刚度)这5个控制单元开裂的关键参数进行了反演研究.通过宏观力学性能和细观开裂的试验结果,对一组试件的试验结果与参数化模型结果进行逆推分析,得到了控制因素在模拟中适用的参数范围.然后结合不同配合比试件的骨料定量化信息,对3个骨料面积不同的模型,应用已得到的参数范围中值来模拟获得裂缝扩展的定量结果,并对照模拟与试验的力学性能和裂缝量化结果验证参数范围的准确性.
中图分类号:
王青原, 许颖, 钱胜. 混凝土三点弯曲梁随机骨料模型的开裂模拟[J]. 东北大学学报(自然科学版), 2024, 45(7): 1037-1046.
Qing-yuan WANG, Ying XU, Sheng QIAN. Simulation on Cracking of Random Aggregate Model of Concrete Three-Point Bending Beam[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1037-1046.
组号 | 水 | 水泥 | 水灰比 | 细骨料 | 粗骨料 | 减水剂 | 压缩强度 | 弹性模量 |
---|---|---|---|---|---|---|---|---|
kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | MPa | GPa | ||
C30 | 200 | 279 | 0.72 | 1025 | 838 | 0.4 | 34.40 | 19.52 |
C40 | 195 | 463 | 0.42 | 867 | 866 | 3.8 | 42.37 | 21.02 |
C60 | 153 | 512 | 0.30 | 642 | 1071 | 6.2 | 63.43 | 23.00 |
表1 混凝土配合比及力学参数
Table 1 Concrete mix ratios and mechanical parameters
组号 | 水 | 水泥 | 水灰比 | 细骨料 | 粗骨料 | 减水剂 | 压缩强度 | 弹性模量 |
---|---|---|---|---|---|---|---|---|
kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | MPa | GPa | ||
C30 | 200 | 279 | 0.72 | 1025 | 838 | 0.4 | 34.40 | 19.52 |
C40 | 195 | 463 | 0.42 | 867 | 866 | 3.8 | 42.37 | 21.02 |
C60 | 153 | 512 | 0.30 | 642 | 1071 | 6.2 | 63.43 | 23.00 |
参数 | 骨料 | 砂浆 | ITZ | MII |
---|---|---|---|---|
弹性模量/GPa | 72 | 28 | 24 | 26 |
平面内泊松比 | 0.16 | 0.2 | — | — |
最大容许拉应力/MPa | — | — | 2.6 | 4 |
最大容许切应力/MPa | — | — | 12 | 30 |
Ⅰ型断裂能/(N·mm-1) | — | — | 0.025 | 0.1 |
Ⅱ型断裂能/(N·mm-1) | — | — | 0.625 | 2.5 |
准则材料系数 | — | — | 1.2 | 1.2 |
表2 基准模型材料参数
Table 2 Material parameters of baseline model
参数 | 骨料 | 砂浆 | ITZ | MII |
---|---|---|---|---|
弹性模量/GPa | 72 | 28 | 24 | 26 |
平面内泊松比 | 0.16 | 0.2 | — | — |
最大容许拉应力/MPa | — | — | 2.6 | 4 |
最大容许切应力/MPa | — | — | 12 | 30 |
Ⅰ型断裂能/(N·mm-1) | — | — | 0.025 | 0.1 |
Ⅱ型断裂能/(N·mm-1) | — | — | 0.625 | 2.5 |
准则材料系数 | — | — | 1.2 | 1.2 |
组别 | 骨料总面积 占比 | 粗骨料 (5~10 mm) | 细骨料 (1~5 mm) |
---|---|---|---|
C30 | 30.4 | 0.113 | 0.191 |
C40 | 42.9 | 0.158 | 0.268 |
C60 | 47.3 | 0.175 | 0.297 |
表3 不同占比的骨料面积计算结果 (%)
Table 3 Calculation results of aggregate area with different percentages
组别 | 骨料总面积 占比 | 粗骨料 (5~10 mm) | 细骨料 (1~5 mm) |
---|---|---|---|
C30 | 30.4 | 0.113 | 0.191 |
C40 | 42.9 | 0.158 | 0.268 |
C60 | 47.3 | 0.175 | 0.297 |
1 | Ying J W, Guo J.Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model[J].Materials,2021,14(15):4314. |
2 | Zhang P, Li J C, Zhao Y,et al.Crack propagation analysis and fatigue life assessment of high‐strength bolts based on fracture mechanics[J].Science Reports,2023,13:14567. |
3 | Michels J, Zile E, Czaderski C,et al.Debonding failure mechanisms in prestressed CFRP/epoxy/concrete connections[J].Engineering Fracture Mechanics,2014,132:16-37. |
4 | 肖宇轩,叶晓峰,周伟,等.基于非线性断裂力学模型的混凝土坝闸墩裂缝成因分析[J].武汉大学学报(工学版),2022,55(3):229-237. |
Xiao Yu‑xuan, Ye Xiao‑feng, Zhou Wei,et al.Cause analysis of cracks in piers of concrete dam based on nonlinear fracture mechanics model[J].Engineering Journal of Wuhan University,2022,55(3):229-237. | |
5 | Barenblatt G I.The formation of equilibrium cracks during brittle fracture.General ideas and hypotheses.Axially‑symmetric cracks[J].Journal of Applied Mathematics and Mechanics,1959,23(3):622-636. |
6 | Vishalakshi K P, Revathi V, Reddy S S.Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete[J].Engineering Fracture Mechanics,2018,194:52-60. |
7 | 徐世烺,熊松波,李贺东,等.混凝土断裂参数厚度尺寸效应的定量表征与机理分析[J].土木工程学报,2017,50(5):57-71. |
Xu Shi‑lang, Xiong Song‑bo, Li He‑dong,et al.Quantitative characterization and mechanism analysis on thickness‑dependent size effect of concrete fracture[J].China Civil Engineering Journal,2017,50(5):57-71. | |
8 | 熊学玉,肖启晟.基于内聚力模型的混凝土细观拉压统一数值模拟方法[J].水利学报,2019,50(4):448-462. |
Xiong Xue‑yu, Xiao Qi‑sheng.A unified meso‑scale simulation method for concrete under both tension and compression based on cohesive zone model[J]. Journal of Hydraulic Engineering,2019,50(4):448-462. | |
9 | 田文祥,周伟,林力,等.基于内聚力模型复合水泥基材料细观开裂模拟[C]//中国力学大会(CCTAM 2019).杭州,2019:1515-1526. |
Tian Wen‑xiang, Zhou Wei, Lin Li,et al.Meso‑cracking simulation of composite cement‑based material based on cohesive zone model[C]//The Chinese Conference of Theoretical and Applied Mechanicals (CCTAM 2019).Hangzhou,2019:1515-1526.) | |
10 | Słowik M.The analysis of failure in concrete and reinforced concrete beams with different reinforcement ratio[J].Archive of Applied Mechanics,2019,89:885–895. |
11 | Marulli M R, Valverde‑Gonzalez A, Paggi M,et al.A combined phase‐field and cohesive zone model approach for crack propagation in layered structures made of nonlinear rubber‑like materials[J].Computer Methods in Applied Mechanics and Engineering,2022,395:11507. |
12 | Gyurko Z, Nemes R.Fracture modelling of normal concrete using different types of aggregates[J].Engineering Failure Analysis,2019,101:464-472. |
13 | Manning J M, Lee C K, Cerami A,et al.Determination of the fracture energy of mortar and concrete by means of three‑point bend tests on notched beams[J].Materials & Structures,1985,18:287-290. |
14 | Shah S P.Determination of fracture parameters (KIcs and CTODc) of plain concrete using three‐point bend tests[J].Materials & Structures,1990,23(6):457-460. |
15 | 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: [S].北京:中国建筑工业出版社,2019. |
Ministry of Housing and Urban‐Rural Developing of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: [S].Beijing:China Architecture & Building Press,2019. | |
16 | 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: [S].北京:中国建筑工业出版社,2009. |
Ministry of Housing and Urban‐Rural Developing of the People’s Republic of China. Standard for test methods of long‑term performance and durability of ordinary concrete: [S].Beijing:China Architecture & Building Press,2009. | |
17 | Wang Q Y, Xu Y, Liu C Y.Concrete microcracks detection under compressive load based on nonlinear ultrasonics modulation with broadband excitation[J].Research in Nondestructive Evaluation,2022,33(2):98-120. |
18 | Yuan W Y, Dong W, Zhang B S,et al.Determination of double‑K fracture parameters of concrete using bottom‑notched splitting test[J]. Journal of Materials in Civil Engineering,2023,35(5):04023066. |
[1] | 付腾飞, 徐涛, 朱万成, 王兴伟. 基于多晶离散元法的砂岩三轴压缩损伤特性[J]. 东北大学学报:自然科学版, 2020, 41(7): 968-974. |
[2] | 王述红, 邱伟, 高红岩, 张紫杉. 数值流形位移法在岩体裂缝扩展中的应用[J]. 东北大学学报:自然科学版, 2019, 40(4): 552-556. |
[3] | 程玉刚, 卢义玉, 葛兆龙, 仲建宇. 孔隙水压力梯度对煤层导向压裂控制影响[J]. 东北大学学报:自然科学版, 2017, 38(7): 1043-1048. |
[4] | 于淼, 朱万成, 于永军, 于庆磊. 颗粒尺寸对岩石抗拉强度和断裂韧度影响的数值模拟[J]. 东北大学学报:自然科学版, 2017, 38(6): 864-868. |
[5] | 邓永刚, 邸洪双, 胡美源, 张洁岑. 基于三点弯曲试验研究合金化镀层剥落机制[J]. 东北大学学报:自然科学版, 2016, 37(1): 49-53. |
[6] | 宋晨鹏,卢义玉,贾云中,夏彬伟. 煤岩交界面对水力压裂裂缝扩展的影响[J]. 东北大学学报:自然科学版, 2014, 35(9): 1340-1344. |
[7] | 陈庆凯;朱万成;. 预裂爆破成缝机理及预裂孔间距的设计方法[J]. 东北大学学报(自然科学版), 2011, 32(7): 1024-1027. |
[8] | -. 平面应变断裂韧性K_(1C)三点弯曲试验法的影响因素[J]. 东北大学学报:自然科学版, 1976, -(3): 21-35. |
[9] | -. 40SiMnCrNiMoV钢的断裂韧性的测定及热处理的影响[J]. 东北大学学报:自然科学版, 1975, -(1): 14-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||