1 |
Khayyam H, Kouzani A Z, Hu E J.Reducing energy consumption of vehicle air conditioning system by an energy management system[C]//IEEE Intelligent Vehicles Symposium. Xi’an,2009:752-757.
|
2 |
Sumeru K, Martin L, Ani F N,et al.Energy savings in air conditioning system using ejector:an overview[J].Applied Mechanics and Materials,2014,493:93-98.
|
3 |
Wei K C, Dage G A.An intelligent automotive climate control system[C]//IEEE International Conference on Systems,Man and Cybernetics.Vancouver,BC,2002:2977-2982.
|
4 |
Wang L, Cai W J, Zhao H X,et al.Experimentation and cycle performance prediction of hybrid A/C system using automobile exhaust waste heat[J].Applied Thermal Engineering,2016,94:314-323.
|
5 |
Suzuki M.Application of adsorption cooling systems to automobiles[J].Heat Recovery Systems and CHP,1993,13(4):335-340.
|
6 |
Edmunds J A, Wuebles D L S M.Energy and radiative precursor emissions[M].Richland:Pacific Northwest National Laboratory,1987:14-16.
|
7 |
Wang L W, Wang R Z, Oliveira R G.A review on adsorption working pairs for refrigeration[J].Renewable and Sustainable Energy Reviews,2009,13(3):518-534.
|
8 |
Sarbu I.A review on substitution strategy of non‑ecological refrigerants from vapour compression‑based refrigeration,air‑conditioning and heat pump systems[J].International Journal of Refrigeration,2014,46:123-141.
|
9 |
Han Y, Wang X D, Sun H,et al.CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance[J].Energy,2019,167:469-483.
|
10 |
Li A, Yeoh G H, Yuen A C Y,et al.Numerical simulation of condensation effect on a steam ejector by wet steam model[C]//Thirteenth International Conference on Flow Dynamics. Sendai,2016:10-12.
|
11 |
Li A, Yuen A C Y, Chen T B Y,et al.Computational study of wet steam flow to optimize steam ejector efficiency for potential fire suppression application[J].Applied Sciences,2019,9(7):1486.
|
12 |
Bartosiewicz Y, Aidoun Z, Mercadier Y.Numerical assessment of ejector operation for refrigeration applications based on CFD[J].Applied Thermal Engineering,2006,26(5/6):604-612.
|
13 |
Wu H Q, Liu Z L, Han B,et al.Numerical investigation of the influences of mixing chamber geometries on steam ejector performance[J].Desalination,2014,353:15-20.
|
14 |
Zhu Y H, Jiang P X.Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance[J].International Journal of Refrigeration,2014,40:31-42.
|
15 |
Lee M S, Lee H, Hwang Y,et al.Optimization of two‑phase R600a ejector geometries using a non‑equilibrium CFD model[J].Applied Thermal Engineering,2016,109:272-282.
|
16 |
Han Y, Wang X D, Li A,et al.Optimum efficiency of a steam ejector for fire suppression based on the variable mixing section diameter[J].Entropy,2022,24:1625.
|
17 |
Haghparast P, Sorin M V, Nesreddine H.The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle[J].Energy,2018,162:728-743.
|
18 |
张家豪.小型蒸汽喷射实验系统的结构改进和性能提高[D].沈阳:东北大学,2015.
|
|
Zhang Jia‑hao.Structure improvement and performance improvement of small steam injection experimental system[D].Shenyang:Northeastern University,2015.
|
19 |
Pianthong K, Seehanam W, Behnia M,et al.Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique[J].Energy Conversion and Management,2007,48(9):2556-2564.
|
20 |
Besagni G, Mereu R, Inzoli F.CFD study of ejector flow behavior in a blast furnace gas galvanizing plant[J].Journal of Thermal Science,2015,24(1):58-66.
|
21 |
Besagni G, Mereu R, Chiesa P,et al.An integrated lumped parameter—CFD approach for off‑design ejector performance evaluation[J].Energy Conversion and Management,2015,105:697-715.
|
22 |
Carrillo J A E, Francisco J D L, José M S L.Single‑phase ejector geometry optimisation by means of a multi‑objective evolutionary algorithm and a surrogate CFD model[J].Energy,2018,164:46-64.
|
23 |
Li A, Yuen A C Y, Wang W,et al.Numerical investigation on the thermal management of lithium‑ion battery system and cooling effect optimization[J].Applied Thermal Engineering,2022,215:118966.
|
24 |
Sriveerakul T, Aphornratana S, Chunnanond K.Performance prediction of steam ejector using computational fluid dynamics:part 2. flow structure of a steam ejector influenced by operating pressures and geometries[J].International Journal of Thermal Sciences,2007,46(8):823-833.
|
25 |
Zhu Y H, Jiang P X.Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance[J].International Journal of Refrigeration,2014,40:31-42.
|
26 |
Berana M S, Nakagawa M, Harada A.Shock waves in supersonic two‑phase flow of CO2 in converging‑diverging nozzles[J].HVAC&R Research,2009,15(6):1081-1098.
|
27 |
Wang X D, Dong J L, Zhang G L,et al.The primary pseudo‑shock pattern of steam ejector and its influence on pumping efficiency based on CFD approach[J].Energy,2019,167:224-234.
|
28 |
Desevaux P, Prenel J P, Hostache G.An optical analysis of an induced flow ejector using light polarization properties[J].Experiments in Fluids,1994,16(3):165-170.
|
29 |
Desevaux P.A method for visualizing the mixing zone between two co‑axial flows in an ejector[J].Optics and Lasers in Engineering,2001,35(5):317-323.
|
30 |
Bouhanguel A, Desevaux P, Gavignet E.Flow visualization in supersonic ejectors using laser tomography techniques[J].International Journal of Refrigeration,2011,34(7):1633-1640.
|
31 |
Wang H, Cai W J, Wang Y Y.Modeling of a hybrid ejector air conditioning system using artificial neural networks[J].Energy Conversion and Management,2016,127:11-24.
|
32 |
Li H, Wang X D, Huang H L,et al.Numerical study on the effect of superheat on the steam ejector internal flow and entropy generation for MED-TVC desalination system[J].Desalination,2022,537:115874.
|