1 |
Sookram C, Munodawafa D, Phori P M,et al.Who’s supported interventions on salt intake reduction in the sub‑Saharan Africa region[J].Cardiovascular Diagnosis and Therapy,2015,5(3):186-190.
|
2 |
Hettiarachchi R, Haputhanthri U, Herath K,et al.A novel transfer learning‑based approach for screening pre‑existing heart diseases using synchronized ECG signals and heart sounds[C]//2021 IEEE International Symposium on Circuits and Systems (ISCAS).Daegu,2021:1-5.
|
3 |
Rautaharju P M.Eyewitness to history:landmarks in the development of computerized electrocardiography[J].Journal of Electrocardiology,2016,49(1):1-6.
|
4 |
Leatham A.Auscultation of the heart and phonocardiography[J].Postgraduate Medical Journal,1971,47(550):582.
|
5 |
Martins M, Gomes P, Oliveira C,et al.Design and evaluation of a diaphragm for electrocardiography in electronic stethoscopes[J].IEEE Transactions on Biomedical Engineering,2020,67(2):391-398.
|
6 |
Chakir F, Jilbab A, Nacir C,et al.Recognition of cardiac abnormalities from synchronized ECG and PCG signals[J].Physical and Engineering Sciences in Medicine,2020,43(2):673-677.
|
7 |
Li J H, Ke L, Du Q,et al.Multi‑modal cardiac function signals classification algorithm based on improved D-S evidence theory[J].Biomedical Signal Processing and Control,2022,71:103078.
|
8 |
Singh S A, Singh S A, Devi N D,et al.Heart abnormality classification using PCG and ECG recordings[J].Computación y Sistemas,2021,25(2):381-391.
|
9 |
Huang J S, Chen B Q, Yao B,et al.ECG arrhythmia classification using STFT‑based spectrogram and convolutional neural network[J].IEEE Access,2019,7:92871-92880.
|
10 |
Al Rahhal M M, Bazi Y, Al Zuair M,et al.Convolutional neural networks for electrocardiogram classification[J].Journal of Medical and Biological Engineering,2018,38(6):1014-1025.
|
11 |
Potes C, Parvaneh S, Rahman A,et al.Ensemble of feature‑based and deep learning‑based classifiers for detection of abnormal heart sounds[J].Computing in Cardiology,2016,43:621-624.
|
12 |
TSchannen M, Kramer T, Marti G,et al.Heart sound classification using deep structured features[C]//2016 Computing in Cardiology Conference (CinC).Vancouver:IEEE,2016:565-568.
|
13 |
Wibawa M S, Maysanjaya I M D, Novianti N K D P,et al.Abnormal heart rhythm detection based on spectrogram of heart sound using convolutional neural network[C]//The 6th International Conference on Cyber and IT Service Management (CITSM 2018).Parapat:IEEE,2018:1-4.
|
14 |
Wu J M T, Tsai M H, Huang Y Z,et al.Applying an ensemble convolutional neural network with Savitzky‑Golay filter to construct a phonocardiogram prediction model[J].Applied Soft Computing,2019,78:29-40.
|
15 |
Noman F, Ting C M, Salleh S H,et al.Short‑segment heart sound classification using an ensemble of deep convolutional neural networks[C]//International Conference on Acoustics,Speech and Signal Processing (ICASSP).Brighton,2019:1318-1322.
|
16 |
Li H, Wang X P, Liu C C,et al.Integrating multi‑domain deep features of electrocardiogram and phonocardiogram for coronary artery disease detection[J].Computers in Biology and Medicine,2021,138:104914.
|
17 |
Wang Z G, Oates T.Imaging time‑series to improve classification and imputation[EB/OL].(2015-06-01) [2023-03-21]..
|
18 |
Clifford G D, Liu C Y, Moody B,et al.Classification of normal/abnormal heart sound recordings:the PhysioNet/computing in cardiology challenge 2016[C]//2016 Computing in Cardiology Conference (CinC).Vancouver:IEEE,2016:609-612.
|
19 |
Eckmann J P, Kamphorst S O, Ruelle D.Recurrence plots of dynamical systems[J].World Scientific Series on Nonlinear Science Series A,1995,16:441-445.
|
20 |
Liu L, Wang Z G.Encoding temporal Markov dynamics in graph for time series visualization[EB/OL].(2016-10-24) [2023-03-21]. .
|
21 |
He K M, Zhang X Y, Ren S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,2016:770-778.
|
22 |
Hu J, Shen L, Sun G.Squeeze‑and‑excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:7132-7141.
|
23 |
Woo S, Park J, Lee J Y,et al.CBAM:convolutional block attention module[C]//Computer Vision-ECCV2018.Munich,2018:3-19.
|