东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (3): 60-68.DOI: 10.12068/j.issn.1005-3026.2025.20230267
收稿日期:
2023-09-13
出版日期:
2025-03-15
发布日期:
2025-05-29
通讯作者:
马辉
作者简介:
官 宏(1995—),男,四川乐山人,东北大学博士研究生基金资助:
Hong GUAN1, Qian XIONG1, Hui MA1,2(), Wei-wei WANG1
Received:
2023-09-13
Online:
2025-03-15
Published:
2025-05-29
Contact:
Hui MA
About author:
MA Hui E-mail: mahui_2007@163.com
摘要:
为了实现叶片裂纹故障特征提取,首先,基于Mindlin-Reissner壳单元建立含呼吸效应的裂纹叶片有限元模型,求解裂纹叶片在离心载荷与气动载荷共同作用下的动力学响应,为故障特征提取提供激励信号输入.然后,建立基于非线性输出频率响应函数的故障指标以及能量指标.最后,分析各种指标对于旋转叶片裂纹故障特征提取的有效性.结果表明,贡献率指标Fe(n)以及加权贡献率指标Rn(n)对叶片裂纹故障进行诊断时稳定性较差且不敏感,而能量指标在共振与非共振状态下均能有效提取叶片裂纹故障特征.所得结论可以为旋转叶片裂纹故障的特征提取、分析及指标筛选提供工程技术指导.
中图分类号:
官宏, 熊茜, 马辉, 汪伟伟. 旋转叶片裂纹故障特征提取与分析[J]. 东北大学学报(自然科学版), 2025, 46(3): 60-68.
Hong GUAN, Qian XIONG, Hui MA, Wei-wei WANG. Fault Feature Extraction and Analysis of Rotating Blade Cracks[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 60-68.
图4 第1阶共振状态下不同γ的前4阶WNOFRFs值(a)—Rn(1); (b)—Rn(2); (c)—Rn(3); (d)—Rn(4).
Fig.4 WNOFRFs values at the first 4 order at different γ under the 1st resonance state
图5 第1阶共振状态下不同λ的前4阶WNOFRFs值(a)—Rn(1); (b)—Rn(2); (c)—Rn(3); (d)—Rn(4).
Fig.5 WNOFRFs values at the first 4 order at different λ under the 1st resonance state
图6 150 Hz激励频率下不同γ的前4阶WNOFRFs值(a)—Rn(1); (b)—Rn(2); (c)—Rn(3); (d)—Rn(4).
Fig.6 WNOFRFs values at the first 4 order under different γ at 150 Hz excitation frequency
图7 150 Hz激励频率下不同λ下的前4阶WNOFRFs值(a)—Rn(1); (b)—Rn(2); (c)—Rn(3); (d)—Rn(4).
Fig.7 WNOFRFs values at the first 4 orders under different λ at 150 Hz excitation frequency
指标类型 | 数值 | 1阶共振频率下能量指标 δ×10-3/J | 非共振频率下能量指标 δ×10-5/J |
---|---|---|---|
裂纹深度比γ | 0 | 0 | 0 |
0.1 | 0.46 | 0.35 | |
0.2 | 0.83 | 0.48 | |
0.3 | 4.31 | 0.85 | |
0.4 | 12.39 | 1.44 | |
0.5 | 20.92 | 3.62 | |
裂纹位置比λ | 0 | 0 | 0 |
0.1 | 28.4 | 2.32 | |
0.2 | 9.80 | 1.23 | |
0.3 | 4.31 | 0.85 | |
0.4 | 1.41 | 0.31 |
表1 指标 δ 变化趋势
Table 1 Change trend of indicator δ
指标类型 | 数值 | 1阶共振频率下能量指标 δ×10-3/J | 非共振频率下能量指标 δ×10-5/J |
---|---|---|---|
裂纹深度比γ | 0 | 0 | 0 |
0.1 | 0.46 | 0.35 | |
0.2 | 0.83 | 0.48 | |
0.3 | 4.31 | 0.85 | |
0.4 | 12.39 | 1.44 | |
0.5 | 20.92 | 3.62 | |
裂纹位置比λ | 0 | 0 | 0 |
0.1 | 28.4 | 2.32 | |
0.2 | 9.80 | 1.23 | |
0.3 | 4.31 | 0.85 | |
0.4 | 1.41 | 0.31 |
指标 | 共振状态 | 非共振状态 | 特点 | |||
---|---|---|---|---|---|---|
不同深度 | 不同位置 | 不同深度 | 不同位置 | |||
Fe(n) | Fe(1) | × | × | √ | √ | 适用范围小 |
Fe(2) | × | × | √ | √ | ||
Fe(3) | × | × | √ | √ | ||
Fe(4) | × | × | × | × | ||
Rn(n) | Rn(1) | × | × | √ | √ | |
Rn(2) | × | × | √ | × | ||
Rn(3) | × | × | × | × | ||
Rn(4) | × | × | × | × | ||
能量指标δ | √ | √ | √ | √ | 稳定性好、灵敏度高、适用范围广 |
表2 指标对比
Table 2 Comparison of the indicators
指标 | 共振状态 | 非共振状态 | 特点 | |||
---|---|---|---|---|---|---|
不同深度 | 不同位置 | 不同深度 | 不同位置 | |||
Fe(n) | Fe(1) | × | × | √ | √ | 适用范围小 |
Fe(2) | × | × | √ | √ | ||
Fe(3) | × | × | √ | √ | ||
Fe(4) | × | × | × | × | ||
Rn(n) | Rn(1) | × | × | √ | √ | |
Rn(2) | × | × | √ | × | ||
Rn(3) | × | × | × | × | ||
Rn(4) | × | × | × | × | ||
能量指标δ | √ | √ | √ | √ | 稳定性好、灵敏度高、适用范围广 |
1 | Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue[J]. Engineering Failure Analysis, 2011, 18(4): 1223-1232. |
2 | Esfandiari A, Bakhtiari-Nejad F, Rahai A. Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation [J]. International Journal of Mechanical Sciences, 2013, 70: 79-89. |
3 | Ma T C, Song D, Shen J X, et al. Blade crack detection using variational model decomposition and time-delayed feedback nonlinear tri-stable stochastic resonance[J]. Structural Health Monitoring, 2023, 22(2): 1478-1493. |
4 | Madhavan S, Jain R, Sujatha C, et al. Vibration based damage detection of rotor blades in a gas turbine engine [J]. Engineering Failure Analysis, 2014, 46: 26-39. |
5 | Huang X, Zhang X D, Xiong Y W, et al. A novel intelligent fault diagnosis approach for early cracks of turbine blades via improved deep belief network using three-dimensional blade tip clearance [J]. IEEE Access, 2021, 9: 13039-13051. |
6 | Cao M S, Lu Q T, Su Z Q, et al. A nonlinearity-sensitive approach for detection of “breathing” cracks relying on energy modulation effect[J]. Journal of Sound and Vibration, 2022, 524: 116754. |
7 | 陈雪峰. 智能运维与健康管理[M]. 北京:机械工业出版社, 2020. |
Chen Xue-feng. Intelligent maintenance and health management[M]. Beijing: China Machine Press, 2020. | |
8 | 李宏坤, 贺长波, 于刚, 等. 利用稀疏盲源分离方法的叶片裂纹特征提取[J]. 振动工程学报, 2017, 30(3): 510-518. |
Li Hong-kun, He Chang-bo, Yu Gang, et al. Blade crack feature extraction by using sparse blind source separation algorithm [J]. Journal of Vibration Engineering, 2017, 30(3): 510-518. | |
9 | Yang L H, Ma M, Wu S M, et al. An improved analytical dynamic model for rotating blade crack: with application to crack detection indicator analysis [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 1935-1961. |
10 | Yu Z X, Xu C, Du F, et al. Time-domain spectral finite element method for wave propagation analysis in structures with breathing cracks [J]. Acta Mechanica Solida Sinica, 2020, 33(6): 812-822. |
11 | Cao S P, Hu Z J, Luo X H, et al. Research on fault diagnosis technology of centrifugal pump blade crack based on PCA and GMM [J]. Measurement, 2021, 173: 108558. |
12 | Lang Z Q, Peng Z K. A novel approach for nonlinearity detection in vibrating systems [J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 603-615. |
13 | Peng Z K, Lang Z Q, Billings S A. Crack detection using nonlinear output frequency response functions [J]. Journal of Sound and Vibration, 2007, 301(3/4/5): 777-788. |
14 | Peng Z K, Lang Z Q, Wolters C, et al. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 1045-1061. |
15 | Liu Y, Zhao Y L, Lang Z Q, et al. Weighted contribution rate of nonlinear output frequency response functions and its application to rotor system fault diagnosis [J]. Journal of Sound and Vibration, 2019, 460: 114882. |
16 | Liu Y, Zhao Y L, Han J Y, et al. Combination algorithm for cracked rotor fault diagnosis based on NOFRFs and HHR [J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1585-1593. |
17 | Wei K X, Ye L, Ning L W, et al. Nonlinear dynamic response of a cracked beam under multi-frequency excitation [J]. Advances in Vibration Engineering, 2013, 12(5): 431-446. |
18 | Mao H L, Tang W L, Huang Y X, et al. Research on NOFRF entropy-based detection method for early damage of pillar porcelain insulator [J]. Shock and Vibration, 2020, 2020: 2841254. |
19 | 李志农, 杜宜光, 肖尧先. 基于非线性输出频率响应函数的多裂纹转子故障诊断方法研究 [J]. 兵工学报, 2015, 36(6):1096-1103. |
Li Zhi-nong, Du Yi-guang, Xiao Yao-xian.Fault diagnosis method of rotor system with multi-crack based on nonlinear output frequency response function[J]. Acta Armamentarii, 2015, 36(6): 1096-1103. | |
20 | Zhang X T, Yang Y F, Shi M M, et al. An energy track method for early-stage rub-impact fault investigation of rotor system [J]. Journal of Sound and Vibration, 2022, 516: 116545. |
21 | Zhang X T, Yang Y F, Ma H, et al. A novel diagnosis indicator for rub-impact of rotor system via energy method [J]. Mechanical Systems and Signal Processing, 2023, 185: 109825. |
22 | Zhang X T, Yang Y F, Shi M M, et al. Novel energy identification method for shallow cracked rotor system [J]. Mechanical Systems and Signal Processing, 2023, 186: 109886. |
23 | Huh Y C, Chung T Y, Moon S J, et al. Damage detection in beams using vibratory power estimated from the measured accelerations [J]. Journal of Sound and Vibration, 2011, 330(15): 3645-3665. |
24 | Xiong Q, Guan H, Ma H, et al. Dynamic characteristic analysis of rotating blade with breathing crack [J]. Mechanical Systems and Signal Processing, 2023, 196: 110325. |
25 | Lang Z Q, Billings S A. Energy transfer properties of non-linear systems in the frequency domain [J]. International Journal of Control, 2005, 78(5): 354-362. |
26 | Liang H Y, Lu H H, Feng K P, et al. Application of the improved NOFRFs weighted contribution rate based on KL divergence to rotor rub-impact [J]. Nonlinear Dynamics, 2021, 104(4): 3937-3954. |
27 | 李津涛. 基于NOFRFs的转子系统碰摩故障诊断方法的研究 [D]. 沈阳: 东北大学, 2021. |
Li Jin-tao. Research on diagnosis methods for rub-impact fault of a rotor system based on nonlinear output frequency response functions[D]. Shenyang: Northeastern University, 2021. | |
28 | Liu Y, Zhao Y L, Li J T, et al. Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact [J]. Mechanical Systems and Signal Processing, 2020, 136: 106518. |
29 | 赵晨光. 含呼吸裂纹的旋转扭形叶片动力学特性研究 [D]. 沈阳: 东北大学, 2021. |
Zhao Chen-guang. Research on the dynamic characteristics of rotating blade with breathing crack [D]. Shenyang: Northeastern University, 2021. |
[1] | 张耀满, 吴双金, 饶兆峰. 电火花线切割Inconel 718温度场分析与加工建模[J]. 东北大学学报(自然科学版), 2025, 46(3): 88-96. |
[2] | 李明, 刘铭瑞, 周立明. 力电湿多物理场耦合Cell-Based光滑有限元法研究[J]. 东北大学学报:自然科学版, 2020, 41(9): 1363-1368. |
[3] | 方淑君, 王涛, 聂念从, 张凌瑞. 基于ABAQUS标准扩展有限元法的不良裂缝构型影响分析[J]. 东北大学学报:自然科学版, 2020, 41(11): 1646-1653. |
[4] | 高峰, 孙伟, 高俊男. 基于有限元法的硬涂层-整体叶盘振动特性[J]. 东北大学学报:自然科学版, 2019, 40(5): 688-693. |
[5] | 胡晟, 吕江涛, 司光远. 基于改进型泊松-玻尔兹曼方程的电渗流建模与分析[J]. 东北大学学报:自然科学版, 2019, 40(3): 447-451. |
[6] | 李炳强, 马辉, 郝玉明, 谢方涛. 考虑机匣柔性的新型旋转叶片-机匣碰摩模型[J]. 东北大学学报:自然科学版, 2018, 39(8): 1143-1148. |
[7] | 王述红, 何坚, 杨天娇. 考虑降雨入渗的边坡稳定性数值分析[J]. 东北大学学报:自然科学版, 2018, 39(8): 1196-1200. |
[8] | 李健, 高微, 张亚双, 刘欲诺. 颗粒振动及耗能特性研究的弹塑性接触建模方法[J]. 东北大学学报:自然科学版, 2018, 39(8): 1211-1216. |
[9] | 周立明, 任书慧, 孟广伟, 李荣佳. 含裂纹功能梯度板能量释放率的ABAQUS用户子程序开发[J]. 东北大学学报:自然科学版, 2017, 38(9): 1309-1314. |
[10] | 马辉, 武爽, 曾劲, 张文胜. 直裂纹悬臂梁系统阻尼特性分析[J]. 东北大学学报:自然科学版, 2017, 38(4): 546-550. |
[11] | 王安国, 姜周华, 唐骥, 董艳伍. 空心环形件电渣熔铸内结晶器铜板变形有限元瞬态分析[J]. 东北大学学报:自然科学版, 2016, 37(9): 1332-1337. |
[12] | 周立明, 孟广伟, 李锋, 郭桂凯. 含裂纹复合材料的Cell-based光滑扩展有限元法[J]. 东北大学学报:自然科学版, 2016, 37(8): 1127-1132. |
[13] | 王旭, 王静文, 王柯元. 阈值Landweber在MIT图像重建中的应用[J]. 东北大学学报:自然科学版, 2016, 37(4): 477-480. |
[14] | 范威, 郭立新. 考虑气流影响的直通穿孔管消声器声学性能[J]. 东北大学学报:自然科学版, 2016, 37(11): 1655-1659. |
[15] | 张义民, 王昊, 曹辉, 杨周. 基于有限元法的数控车床主轴系统频率可靠性分析[J]. 东北大学学报:自然科学版, 2015, 36(8): 1155-1159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||