东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (3): 69-79.DOI: 10.12068/j.issn.1005-3026.2025.20230274
收稿日期:
2023-09-25
出版日期:
2025-03-15
发布日期:
2025-05-29
通讯作者:
赵玉欣
作者简介:
郝 博(1963—),男,辽宁沈阳人,东北大学教授,博士生导师.
基金资助:
Bo HAO1,2, Yu-xin ZHAO2(), Xin-yan XU2
Received:
2023-09-25
Online:
2025-03-15
Published:
2025-05-29
Contact:
Yu-xin ZHAO
摘要:
基于螺旋 (gyroid)型的3周期最小曲面(TPMS),针对目前研究中梯度点阵结构梯度变化规律较为单一的问题,提出了正弦函数平方和余弦函数平方密度梯度蒙皮点阵结构,并采用选择性激光熔化(SLM)技术制备了钛合金(Ti-6Al-4V)样件.为研究其力学性能对样件进行了有限元分析和压缩实验,二者结果误差小于6.3%.以传统线性密度梯度蒙皮点阵结构为对照,将3种结构的力学性能、变形行为及能量吸收特性进行了对比分析.结果发现,3种结构中,余弦函数平方蒙皮点阵结构承载性能最好,正弦函数平方蒙皮点阵结构能量吸收能力最强.通过优化蒙皮点阵结构内部相对密度分布,可以提高其力学性能和能量吸收能力.
中图分类号:
郝博, 赵玉欣, 徐新岩. 三角函数密度梯度蒙皮点阵结构设计及力学性能[J]. 东北大学学报(自然科学版), 2025, 46(3): 69-79.
Bo HAO, Yu-xin ZHAO, Xin-yan XU. Design and Mechanical Performance of Triangular Function Density Gradient Skin Lattice Structures[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 69-79.
设计参数 | 物理意义 |
---|---|
α,β,γ | 控制晶胞大小的参数 |
RG | 相对密度参数,下标表示gyroid |
表1 设计参数及物理意义
Table 1 Design parameters and physical significance
设计参数 | 物理意义 |
---|---|
α,β,γ | 控制晶胞大小的参数 |
RG | 相对密度参数,下标表示gyroid |
设计参数 | 线性点阵 结构 | 正弦函数平方点阵结构 | 余弦函数平方点阵结构 |
---|---|---|---|
k | 2 | -0.3 | -0.3 |
δ | — | 0.11 | 0.12 |
R0 | -0.82 | -0.72 | -0.74 |
表2 3种梯度点阵结构表达式所用参数 (structure expressions)
Table 2 Parameters of three gradient lattice
设计参数 | 线性点阵 结构 | 正弦函数平方点阵结构 | 余弦函数平方点阵结构 |
---|---|---|---|
k | 2 | -0.3 | -0.3 |
δ | — | 0.11 | 0.12 |
R0 | -0.82 | -0.72 | -0.74 |
结构 | 密度/(kg·m-3) | 杨氏模量/GPa | 泊松比 |
---|---|---|---|
蒙皮点阵 | 4 430 | 0.118 | 0.3 |
表3 Ti-6Al-4V的机械性能
Table 3 Mechanical properties of Ti-6Al-4V
结构 | 密度/(kg·m-3) | 杨氏模量/GPa | 泊松比 |
---|---|---|---|
蒙皮点阵 | 4 430 | 0.118 | 0.3 |
网格数 | 初次破坏载荷/kN | 相邻数据误差/% | 初次破坏位移/mm | 相邻数据误差/% |
---|---|---|---|---|
769 962 | 11.756 | — | 0.883 | — |
1 072 809 | 11.985 | 1.95 | 0.901 | 2.04 |
1 912 849 | 12.114 | 1.08 | 0.912 | 1.22 |
2 530 455 | 12.02 | 0.84 | 0.919 | 0.77 |
表4 网格独立性验证
Table 4 Grid independence verification
网格数 | 初次破坏载荷/kN | 相邻数据误差/% | 初次破坏位移/mm | 相邻数据误差/% |
---|---|---|---|---|
769 962 | 11.756 | — | 0.883 | — |
1 072 809 | 11.985 | 1.95 | 0.901 | 2.04 |
1 912 849 | 12.114 | 1.08 | 0.912 | 1.22 |
2 530 455 | 12.02 | 0.84 | 0.919 | 0.77 |
蒙皮点阵结构尺寸定义 | 数值 |
---|---|
点阵结构的宽度 | 20 |
点阵结构的厚度 | 20 |
上、下面板质心间的距离 | 21 |
蒙皮点阵结构的长度 | 20 |
蒙皮厚度 | 1 |
表5 蒙皮点阵结构尺寸参数 (lattice structure mm)
Table 5 Size parameters of the skin
蒙皮点阵结构尺寸定义 | 数值 |
---|---|
点阵结构的宽度 | 20 |
点阵结构的厚度 | 20 |
上、下面板质心间的距离 | 21 |
蒙皮点阵结构的长度 | 20 |
蒙皮厚度 | 1 |
图4 Gyroid蒙皮点阵结构及有限元分析模型(a)—线性密度梯度; (b)—正弦函数平方密度梯度; (c)—余弦函数平方密度梯度; (d)—线性密度梯度有限元分析模型; (e)—正弦函数平方密度梯度有限元分析模型; (f)—余弦函数平方密度梯度有限元分析模型.
Fig.4 Gyroid skin lattice structures and finite element analysis models
A/MPa | B/MPa | N | D1 | D2 | D3 |
---|---|---|---|---|---|
1 567 | 952 | 0.4 | 0.005 | 0.43 | -0.48 |
表6 Johnson-Cook塑性本构参数
Table 6 Johnson-Cook plastic constitutive parameters
A/MPa | B/MPa | N | D1 | D2 | D3 |
---|---|---|---|---|---|
1 567 | 952 | 0.4 | 0.005 | 0.43 | -0.48 |
元素 | Al | Fe | V | Si | C | H | Ti |
---|---|---|---|---|---|---|---|
实测值 | 6.00 | 0.058 | 3.97 | <0.01 | 0.013 | 0.001 8 | 余量 |
表7 钛合金粉末化学组分(质量分数) (powder(mass fraction) %)
Table 7 Chemical composition of titanium alloy
元素 | Al | Fe | V | Si | C | H | Ti |
---|---|---|---|---|---|---|---|
实测值 | 6.00 | 0.058 | 3.97 | <0.01 | 0.013 | 0.001 8 | 余量 |
图6 样件压缩实验(a)—预压紧时的线性密度梯度样件; (b)—预压紧时的正弦函数平方密度梯度样件;(c)—预压紧时的余弦函数平方密度梯度样件; (d)—应变为0.5时的线性密度梯度样件;(e)—应变为0.5时的正弦函数平方密度梯度样件; (f)—应变为0.5时的余弦函数平方密度梯度样件.
Fig.6 Samples compression experiment
点阵结构 | 初次破坏 载荷/kN | 初次破坏 位移/mm |
---|---|---|
线性密度梯度 | 11.921 | 0.884 |
正弦函数平方密度梯度 | 12.623 | 0.802 |
余弦函数平方密度梯度 | 14.224 | 1.024 |
表8 样品的机械性质
Table 8 Mechanical properties of the samples
点阵结构 | 初次破坏 载荷/kN | 初次破坏 位移/mm |
---|---|---|
线性密度梯度 | 11.921 | 0.884 |
正弦函数平方密度梯度 | 12.623 | 0.802 |
余弦函数平方密度梯度 | 14.224 | 1.024 |
图10 有限元分析和实验结果的载荷-位移曲线对比(a)—线性密度梯度gyroid蒙皮点阵结构; (b)—正弦函数平方密度梯度gyroid蒙皮点阵结构;(c)—余弦函数平方密度梯度gtyroid蒙皮点阵结构.
Fig.10 Comparison of load-displacement curves between finite element analysis and experimental results
类型 | 初次破坏位移 | 初次破坏载荷 | ||||
---|---|---|---|---|---|---|
实验值 | 仿真值 | 误差/% | 实验值 | 仿真值 | 误差/% | |
线性密度梯度 | 0.884 | 0.912 | 3.4 | 11.923 | 12.114 | 1.6 |
正弦函数平方密度梯度 | 0.802 | 0.853 | 6.3 | 12.622 | 13.231 | 4.8 |
余弦函数平方密度梯度 | 1.024 | 1.041 | 1.2 | 14.224 | 14.583 | 2.5 |
表9 蒙皮点阵结构有限元分析结果和实验结果的相对误差
Table 9 Relative errors between finite element analysis results and experimental results
类型 | 初次破坏位移 | 初次破坏载荷 | ||||
---|---|---|---|---|---|---|
实验值 | 仿真值 | 误差/% | 实验值 | 仿真值 | 误差/% | |
线性密度梯度 | 0.884 | 0.912 | 3.4 | 11.923 | 12.114 | 1.6 |
正弦函数平方密度梯度 | 0.802 | 0.853 | 6.3 | 12.622 | 13.231 | 4.8 |
余弦函数平方密度梯度 | 1.024 | 1.041 | 1.2 | 14.224 | 14.583 | 2.5 |
样品 | 线性蒙皮 点阵结构 | 正弦函数 平方蒙皮 点阵结构 | 余弦函数 平方蒙皮 点阵结构 |
---|---|---|---|
Wv/(MJ·m-3) | 5.35 | 5.79 | 4.48 |
表10 当ε=0.5时,单位体积样品吸收的能量累积量 (volume of the samples atε=0.5)
Table 10 Accumulated energy absorbed per unit
样品 | 线性蒙皮 点阵结构 | 正弦函数 平方蒙皮 点阵结构 | 余弦函数 平方蒙皮 点阵结构 |
---|---|---|---|
Wv/(MJ·m-3) | 5.35 | 5.79 | 4.48 |
1 | Al-Ketan O, Rowshan R, Abu Al-Rub R K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing, 2018, 19: 167-183. |
2 | Yang L, Mertens R, Ferrucci M, et al.Continuous graded gyroid cellular structures fabricated by selective laser melting: design, manufacturing and mechanical properties[J].Materials & Design,2019,162:394-404. |
3 | Thijs L, Verhaeghe F, Craeghs T, et al. A study of the micro structural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater,2010,58(9):3303–3312. |
4 | Maskery I, Aboulkhair N T, Aremu A O, et al.Compressive failure modes and energy absorption in additively manufactured double gyroid lattices[J].Additive Manufacturing,2017,16:24-29. |
5 | Gibson J L, Ashby F M.Cellular solids[M/OL].Cambridge University Press: 1997-06-15.DOI:10.1017/CBO97811 39878326 . |
6 | Maskery I, Aboulkhair N T, Aremu A O, et al.A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J].Materials Science and Engineering A,2016,670:264-274. |
7 | Choy S Y, Sun C, Leong K F, et al.Compressive properties of functionally graded lattice structures manufactured by selective laser melting[J].Materials & Design,2017,131:112-120. |
8 | 杨磊,郑浩,张聪,等.梯度极小曲面点阵结构力学特性研究[J].华中科技大学学报(自然科学版),2022,50(12):64-69. |
Yang Lei, Zheng Hao, Zhang Cong, et al. Influence of gradient design on mechanical properties of gyroid lattice structures [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (12): 64-69. | |
9 | Tan C L, Deng C, Li S, et al. Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure[J]. International Journal of Extreme Manufacturing,2022,4(4):206-213. |
10 | Nian Y Z, Wan S, Wang X, et al. Study on crashworthiness of nature-inspired functionally graded lattice metamaterials for bridge pier protection against ship collision[J]. Engineering Structures,2023,277: 115404. |
11 | 杨泽凌,徐仰立.激光选区熔化成形拓扑优化梯度点阵结构的抗压性能研究[J].应用激光,2023,43(5):1-10. |
Yang Ze-ling, Xu Yang-li. Compressive properties of functionally grade lattice structures fabricated by selective laser melting[J]. Applied Laser, 2023, 43(5): 1-10. | |
12 | Ahmadi S M, Campoli G, Amin Yavari S, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells[J]. Journal of the Mechanical Behavior of Biomedical Materials,2014,34: 106-115. |
13 | Melchels F P W, Bertoldi K, Gabbrielli R, et al. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography[J].Biomaterials,2010,31(27) : 6909-6916. |
14 | Yang S D, Lee H G, Kim J. A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint[J]. Computer Physics Communications,2010,181(6) : 1037-1046. |
15 | 张坤伦,潘锋,韩勇,等.短纤维增强复合材料的力学性能仿真研究[J].机械设计与制造,2020,358(12):212-215, 220. |
Zhang Kun-lun, Pan Feng, Han Yong, et al. Simulation study on mechanical properties of short fiber reinforced composites [J]. Machinery Design & Manufacture, 2020(12): 212-215, 220. | |
16 | Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J].Engineering Fracture Mechanics, 1983, 21:541-548. |
17 | Wang Z Y, Li P F.Characterisation and constitutive model of tensile properties of selective laser melted Ti-6Al-4V struts for microlattice structures[J]. Materials Science and Engineering: A, 2018, 725: 350-358. |
18 | Ravari K M, Kadkhodaei M, Badrossamay M, et al.Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling[J].International Journal of Mechanical Sciences,2014,88:154-161. |
19 | 熊凯旋.汽车吸能盒正面碰撞的有限元分析及优化[D].株洲:湖南工业大学,2018. |
Xiong Kai-xuan. Finite element analysis and optimization of front impact of automobile crash box [D]. Zhuzhou: Hunan University of Technology, 2018. |
[1] | 周舸;韩寅奔;曲敬龙;丁桦;. U720Li镍基高温合金不同失稳判据的热加工图[J]. 东北大学学报(自然科学版), 2012, 33(5): 702-706. |
[2] | 方轶琉;程逸明;王月香;刘振宇;. 双相不锈钢热变形行为研究[J]. 东北大学学报(自然科学版), 2009, 30(8): 1124-1126. |
[3] | 王月香;刘振宇;王国栋;江来珠;. 变形速率对2205双相不锈钢形变诱导相变的影响[J]. 东北大学学报(自然科学版), 2009, 30(12): 1731-1734. |
[4] | 黄明利;唐春安;朱万成. 岩石单轴压缩下破坏失稳过程SEM即时研究[J]. 东北大学学报(自然科学版), 1999, 20(4): 426-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||