东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (3): 80-87.DOI: 10.12068/j.issn.1005-3026.2025.20230275
收稿日期:
2023-09-26
出版日期:
2025-03-15
发布日期:
2025-05-29
通讯作者:
黄贤振
作者简介:
黄贤振(1982—), 男, 山东定陶人, 东北大学教授, 博士生导师.
基金资助:
Xian-zhen HUANG1,2(), Xu WANG1, Peng-fei DING1, Zhi-yuan JIANG1
Received:
2023-09-26
Online:
2025-03-15
Published:
2025-05-29
Contact:
Xian-zhen HUANG
About author:
HUANG Xian-zhen E-mail: xzhhuang@mail.neu.edu.cn
摘要:
针对球头铣削过程进行研究,旨在完成铣削工艺参数的可靠性优化.首先,根据球头铣刀切削刃运动轨迹,利用Z映射(Z-MAP)算法对加工形成的表面形貌进行仿真,引入表面粗糙度(Ra)衡量加工后的表面质量,通过表面形貌分析实验验证表面形貌仿真模型的准确性;然后,考虑到铣削过程中加工表面质量、刀具使用寿命以及工艺参数不确定性的实际约束条件,建立以主轴转速、刀具进给速度、轴向切深、径向切深为优化变量,以材料去除率(Q)的最大化为优化目标的工艺参数可靠性优化模型;最后,基于灰狼优化算法对优化模型进行求解以获得最优工艺参数,并通过铣削实验验证优化结果的可行性.
中图分类号:
黄贤振, 王旭, 丁鹏飞, 姜智元. 考虑铣削表面形貌的工艺参数可靠性优化[J]. 东北大学学报(自然科学版), 2025, 46(3): 80-87.
Xian-zhen HUANG, Xu WANG, Peng-fei DING, Zhi-yuan JIANG. Reliability Optimization of Process Parameters Considering Milling Surface Morphology[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 80-87.
组别 | n /(r·min-1) | v /(mm·min-1) | ap/mm | fp /mm |
---|---|---|---|---|
1 | 500 | 100 | 0.5 | 0.5 |
2 | 500 | 200 | 0.3 | 0.7 |
3 | 500 | 200 | 0.5 | 0.7 |
4 | 500 | 250 | 0.5 | 0.5 |
5 | 1 000 | 100 | 0.5 | 0.7 |
6 | 1 000 | 200 | 0.3 | 0.5 |
7 | 1 000 | 200 | 0.5 | 0.5 |
8 | 1 000 | 200 | 0.5 | 0.7 |
表1 仿真参数
Table 1 Simulation parameters
组别 | n /(r·min-1) | v /(mm·min-1) | ap/mm | fp /mm |
---|---|---|---|---|
1 | 500 | 100 | 0.5 | 0.5 |
2 | 500 | 200 | 0.3 | 0.7 |
3 | 500 | 200 | 0.5 | 0.7 |
4 | 500 | 250 | 0.5 | 0.5 |
5 | 1 000 | 100 | 0.5 | 0.7 |
6 | 1 000 | 200 | 0.3 | 0.5 |
7 | 1 000 | 200 | 0.5 | 0.5 |
8 | 1 000 | 200 | 0.5 | 0.7 |
n /(r·min-1) | v /(mm·min-1) | ap/mm | fp/mm |
---|---|---|---|
500~2 000 | 50~250 | 0.1~0.7 | 0.3~0.7 |
表2 加工参数范围
Table 2 Range of the processing parameters
n /(r·min-1) | v /(mm·min-1) | ap/mm | fp/mm |
---|---|---|---|
500~2 000 | 50~250 | 0.1~0.7 | 0.3~0.7 |
图5 实验与仿真的铣削表面形貌对比(a)—第1组实验结果; (b)—第1组仿真结果; (c)—第2组实验结果; (d)—第2组仿真结果;(e)—第5组实验结果; (f)—第5组仿真结果; (g)—第8组实验结果; (h)—第8组仿真结果.
Fig. 5 Comparison of milling surface morphology between experiment and simulation
组别 | 表面粗糙度/μm | 相对误差/% | |
---|---|---|---|
仿真值 | 实验值 | ||
1 | 1.581 | 1.764 | 10.37 |
2 | 3.062 | 3.252 | 5.84 |
5 | 2.912 | 2.723 | 6.94 |
8 | 2.954 | 2.844 | 3.87 |
表3 仿真与实验的表面粗糙度对比 (simulation and experiment)
Table 3 Comparison of surface roughness between
组别 | 表面粗糙度/μm | 相对误差/% | |
---|---|---|---|
仿真值 | 实验值 | ||
1 | 1.581 | 1.764 | 10.37 |
2 | 3.062 | 3.252 | 5.84 |
5 | 2.912 | 2.723 | 6.94 |
8 | 2.954 | 2.844 | 3.87 |
参数类型 | n/(r·min-1) | v /(mm·min-1) | ap/mm | fp/mm | r1 | r2 | Q/(mm3·min-1) |
---|---|---|---|---|---|---|---|
初始参数 | 500.0 | 100.0 | 0.3 | 0.3 | — | — | 9.0 |
确定性优化参数 | 1 389.142 4 | 247.817 9 | 0.695 0 | 0.495 5 | 0.401 2 | 0.985 7 | 85.341 7 |
可靠性优化参数 | 1 309.957 5 | 187.109 4 | 0.639 9 | 0.443 4 | 0.996 3 | 1.000 0 | 53.088 9 |
表4 优化结果对比
Table 4 Comparison of optimization results
参数类型 | n/(r·min-1) | v /(mm·min-1) | ap/mm | fp/mm | r1 | r2 | Q/(mm3·min-1) |
---|---|---|---|---|---|---|---|
初始参数 | 500.0 | 100.0 | 0.3 | 0.3 | — | — | 9.0 |
确定性优化参数 | 1 389.142 4 | 247.817 9 | 0.695 0 | 0.495 5 | 0.401 2 | 0.985 7 | 85.341 7 |
可靠性优化参数 | 1 309.957 5 | 187.109 4 | 0.639 9 | 0.443 4 | 0.996 3 | 1.000 0 | 53.088 9 |
图6 不同加工参数条件下铣削表面形貌对比(a)—初始参数; (b)—确定性优化参数; (c)—可靠性优化参数.
Fig. 6 Comparison of milling surface morphology under different processing parameter conditions
1 | Miao H H, Li C Y, Liu C S, et al. Machined surface prediction and reliability analysis in peripheral milling operations[J]. International Journal of Mechanical Sciences, 2024, 272: 109193. |
2 | Ding P F, Huang X Z, Zhang X W, et al. Reliability optimization of micro-milling cutting parameters using slime mould sequence algorithm[J]. Simulation Modelling Practice and Theory, 2022, 119: 102575. |
3 | Imani B M, Elbestawi M A. Geometric simulation of ball-end milling operations[J]. Journal of Manufacturing Science and Engineering, 2001, 123(2): 177-184. |
4 | 谭刚. 球头铣削切削力建模与加工表面形貌仿真研究[D]. 西安: 西北工业大学, 2007. |
Tan Gang. Study on the cutting force modeling and machined surface topography simulation in ball-end milling process[D].Xi’an: Northwestern Polytechnical University, 2007. | |
5 | Xu J T, Zhang H, Sun Y W. Swept surface-based approach to simulating surface topography in ball-end CNC milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 107-118. |
6 | Zhou R H, Chen Q L. An analytical prediction model of surface topography generated in 4-axis milling process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9/10): 3289-3299. |
7 | Jia S, Wang S, Zhang N, et al. Multi-objective parameter optimization of CNC plane milling for sustainable manufacturing[EB/OL].[2023-06-23].. |
8 | 郭斌, 岳彩旭, 张安山,等. 面向表面粗糙度约束的铣削过程参数优化[J]. 哈尔滨理工大学学报, 2023, 28(1): 20-28. |
Guo Bin, Yue Cai-xu, Zhang An-shan, et al. Parameter optimization of milling process for surface roughness constraints[J]. Journal of Harbin University of Science and Technology, 2023, 28(1): 20-28. | |
9 | 张昱, 张昌明. AerMet100超高强度钢铣削表面质量与参数优化[J]. 兵器材料科学与工程, 2020, 43(5): 5-10. |
Zhang Yu, Zhang Chang-ming. Milling surface quality and parameter optimization of AerMet100 ultra-high strength steel[J]. Ordnance Material Science and Engineering, 2020, 43(5): 5-10. | |
10 | Wu T Y, Lin C C. Optimization of machining parameters in milling process of inconel 718 under surface roughness constraints[J]. Applied Sciences, 2021, 11(5): 2137. |
11 | Kumar S, Saravanan I, Patnaik L. Optimization of surface roughness and material removal rate in milling of AISI 1005 carbon steel using Taguchi approach[J]. Materials Today: Proceedings, 2020, 22: 654-658. |
12 | 黄贤振, 孙良仕, 丁鹏飞,等. 基于可靠性的GH4169车削参数优化[J]. 东北大学学报(自然科学版), 2022, 43(5): 696-702. |
Huang Xian-zhen, Sun Liang-shi, Ding Peng-fei, et al. Optimization of turning parameters of GH4169 based on reliability[J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 696-702. | |
13 | Zhou Y D, Tian Y L, Jing X B, et al. Surface topography modeling and roughness extraction in helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 4561-4571. |
14 | Wang X, Jiang Z Y, Huang X Z, et al. Surface topography prediction and reliability analysis of ball end milling[J]. Measurement, 2025, 242: 115770. |
15 | Ding P F, Huang X Z, Li Y X, et al. Reliability optimization of cutting parameters considering the diameter error of slender shaft[J]. Journal of Mechanical Science and Technology, 2021, 35: 4673-4683. |
16 | Liu H Z, Huang X Z, Jiang Z Y, et al. Reliability-based design optimization scheme of isolation capacity of nonlinear vibration isolators[J]. Engineering Structures, 2024, 300: 117220. |
17 | Jiang Z Y, Huang X Z, Wang B X, et al. Time-dependent reliability-based design optimization of main shaft bearings in wind turbines involving mixed-integer variables[J]. Reliability Engineering & System Safety, 2024, 243: 109817. |
18 | Ding P F, Huang X Z. Sustainable optimization of micro-milling machining parameters considering reliability assessment[J]. Mechanics Based Design of Structures and Machines, 2025, 53(2): 864-901. |
19 | Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
20 | Zheng Z Q, Miao X L, Huang X Z, et al. Fastening reliability analysis of bolted joint anti-self-loosening[J]. Journal of Constructional Steel Research, 2023, 202: 107776. |
21 | 黄贤振, 于瑞, 姜智元,等. 考虑热误差的电主轴建模与可靠性全局灵敏度分析[J]. 东北大学学报(自然科学版), 2024, 45(5): 675-682. |
Huang Xian-zhen, Yu-Rui, Jiang Zhi-yuan, et al. Modeling and reliability global sensitivity analysis of motorized spindles considering thermal errors[J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 675-682. | |
22 | Jiang Z Y, Huang X Z, Chang M X, et al. Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model[J]. Engineering Failure Analysis, 2021, 127: 105558. |
23 | Miao H H, Li C Y, Liu C S, et al. Nonlinear chatter and reliability analysis of milling Ti-6Al-4V with slender ball-end milling cutter[J]. Mechanical Systems and Signal Processing, 2024, 217: 111534. |
[1] | 孙瑶, 董俊逸, 唐本甲, 李思慧. 电火花加工单晶硅微结构的表面质量及成形精度[J]. 东北大学学报(自然科学版), 2025, 46(2): 96-103. |
[2] | 辛博, 曹刚, 秦嘉鑫, 赵显力. 激光定向能量沉积NiCo-FGMs的磨削工艺优化[J]. 东北大学学报(自然科学版), 2025, 46(2): 85-95. |
[3] | 巩亚东, 李远峰, 温泉, 任启震. 2.5D Cf/SiC复合材料与SiC陶瓷微磨削性能对比试验研究[J]. 东北大学学报(自然科学版), 2025, 46(1): 52-60. |
[4] | 李远峰, 温泉, 巩亚东, 唐本甲. 2.5D Cf /SiC复合材料微尺度磨削试验研究[J]. 东北大学学报(自然科学版), 2024, 45(8): 1143-1149. |
[5] | 杨震宇, 邹平, 周亮, 王安琪. 单颗CBN磨粒超声振动辅助磨削AISI 304材料去除机理[J]. 东北大学学报(自然科学版), 2024, 45(7): 1011-1019. |
[6] | 代峰, 柳静献. 钢铁企业除尘用涤纶滤料在复杂烟气环境下的老化行为分析[J]. 东北大学学报(自然科学版), 2024, 45(6): 883-889. |
[7] | 乔冠尧, 徐嘉忆, 赵春雨. 基于运动误差的3-D表面形貌检测方法[J]. 东北大学学报(自然科学版), 2024, 45(12): 1726-1733. |
[8] | 张家豪, 邹平, 魏事宇, 梁付强. 单激励三维超声车削加工技术的实验研究[J]. 东北大学学报(自然科学版), 2023, 44(8): 1152-1159. |
[9] | 方锐, 邹平, 段经伟, 魏事宇. 三维超声振动辅助车削减摩特性与表面质量的实验研究[J]. 东北大学学报(自然科学版), 2023, 44(2): 233-241. |
[10] | 孙瑶, 唐本甲, 巩亚东, 李思慧. 镍基单晶高温合金表面微阵列孔的制备方法及其实验研究[J]. 东北大学学报(自然科学版), 2023, 44(12): 1719-1725. |
[11] | 姜世杰, 胡科, 陈丕峰, 战明. 熔丝成型制品三维表面粗糙度的理论与实验研究[J]. 东北大学学报(自然科学版), 2022, 43(9): 1290-1297. |
[12] | 王述红, 魏崴, 韩文帅, 陈浩. 基于CGWO算法的边坡最小安全系数全局寻优方法[J]. 东北大学学报(自然科学版), 2022, 43(7): 1033-1042. |
[13] | 黄贤振, 孙良仕, 丁鹏飞, 朱会彬. 基于可靠性的GH4169车削参数优化[J]. 东北大学学报(自然科学版), 2022, 43(5): 696-702. |
[14] | 温雪龙, 王承宝, 巩亚东, 孙付强. 涂层微磨具的制备及磨削表面质量实验研究[J]. 东北大学学报(自然科学版), 2022, 43(5): 681-688. |
[15] | 温雪龙, 李佳育, 李欣妍. TiC涂层微磨具磨削表面质量影响因素[J]. 东北大学学报(自然科学版), 2022, 43(4): 534-540. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||