东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (6): 113-121.DOI: 10.12068/j.issn.1005-3026.2025.20230337
• 资源与土木工程 • 上一篇
柳静献, 王滨, 朱冕, 赫伟东
收稿日期:
2023-12-18
出版日期:
2025-06-15
发布日期:
2025-09-01
作者简介:
柳静献(1966—),男,河北元氏人,东北大学教授,博士生导师.
基金资助:
Jing-xian LIU, Bin WANG, Mian ZHU, Wei-dong HE
Received:
2023-12-18
Online:
2025-06-15
Published:
2025-09-01
摘要:
混合基质膜因其加工性能好、分离效率高的优势在CO2分离领域有较大的应用潜力.使用溶剂热法制备ZIF-8颗粒,将其与[Bmim][PF6]一同作为分散相,聚偏氟乙烯作为连续相,制备混合基质膜.通过比表面积与孔径分析、扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱、热重分析和力学性能测试对制备材料的物理化学性能表征,研究ZIF-8含量与跨膜压力差对膜CO2分离性能影响,评估膜长期运行的稳定性.结果表明:当ZIF-8在PVDF上的负载量(质量分数)为15%时,膜的CO2分离性能达到最优,CO2渗透系数与CO2/N2选择系数分别为679.26×10-7 cm3·cm·cm-2·s-1·MPa-1与40.33.
中图分类号:
柳静献, 王滨, 朱冕, 赫伟东. PVDF/[Bmim][PF6]/ZIF-8混合基质膜的制备及CO2分离性能[J]. 东北大学学报(自然科学版), 2025, 46(6): 113-121.
Jing-xian LIU, Bin WANG, Mian ZHU, Wei-dong HE. Preparation and CO2 Separation Properties of PVDF/[Bmim][PF6]/ZIF-8 Mixed Matrix Membranes[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 113-121.
名称 | m/g | |||
---|---|---|---|---|
PVDF | [Bmim][PF6] | ZIF-8 | DMF | |
P-0 | 2.8 | — | — | 17.20 |
PZ-0 | 2.8 | — | 0.42 | 16.78 |
PBZ-0 | 2.8 | 1.4 | — | 15.80 |
PBZ-5 | 2.8 | 1.4 | 0.14 | 15.66 |
PBZ-10 | 2.8 | 1.4 | 0.28 | 15.52 |
PBZ-15 | 2.8 | 1.4 | 0.42 | 15.38 |
PBZ-20 | 2.8 | 1.4 | 0.56 | 15.24 |
表1 铸膜液组成
Table 1 Composition of casting solution
名称 | m/g | |||
---|---|---|---|---|
PVDF | [Bmim][PF6] | ZIF-8 | DMF | |
P-0 | 2.8 | — | — | 17.20 |
PZ-0 | 2.8 | — | 0.42 | 16.78 |
PBZ-0 | 2.8 | 1.4 | — | 15.80 |
PBZ-5 | 2.8 | 1.4 | 0.14 | 15.66 |
PBZ-10 | 2.8 | 1.4 | 0.28 | 15.52 |
PBZ-15 | 2.8 | 1.4 | 0.42 | 15.38 |
PBZ-20 | 2.8 | 1.4 | 0.56 | 15.24 |
[1] | Karakurt I, Aydin G. Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries[J]. Energy, 2023, 263: 125650. |
[2] | Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49 (13): 4360-4404. |
[3] | 柳静献,郭颖赫,赫伟东.碳捕集用烟尘超净滤料现状及研究进展[J].纺织导报,2022(3):41-46. |
Liu Jing-xian, Guo Ying-he, He Wei-dong. Status quo and research progress of ultra-clean filter media for carbon capture[J]. China Textile Leader, 2022(3):41-46. | |
[4] | Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1):155. |
[5] | 巩莉丽,白菊,王璨,等.MOF基混合基质气体分离膜界面作用调控研究进展[J].过程工程学报, 2023, 23(4): 489-500. |
Gong Li-li, Bai Ju, Wang Can, et al. Research review in regulating interfacial interaction on MOF-based mixed matrix membranes for gas separation[J]. The Chinese Journal of Process Engineering, 2023, 23(4): 489-500. | |
[6] | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
[7] | Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
[8] | 靳卓,王永洪,张新儒,等.Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J].化工学报,2022, 73(10): 4527-4538. |
Jin Zhuo, Wang Yong-hong, Zhang Xin-ru, et al. Preparation of Pebax/a-MoS2/MIP-202 mixed matrix membranes for CO2 separation[J]. CIESC Journal, 2022, 73(10): 4527-4538. | |
[9] | Jia Q, Lasseuguette E, Lonzinska M M, et al. Hybrid benzimidazole-dichloroimidazole zeolitic imidazolate frameworks based on ZIF-7 and their application in mixed matrix membranes for CO2/N2 separation[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46615-46626. |
[10] | An H, Park S, Kwon H T, et al. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes[J]. Journal of Membrane Science, 2017, 526: 367-376. |
[11] | Guo Z X, Zheng W J, Yan X M, et al. Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes[J]. Journal of Membrane Science, 2020, 605: 118101. |
[12] | Hudiono Y C, Carlisle T K, LaFrate A L, et al. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation[J]. Journal of Membrane Science, 2011, 370(1/2): 141-148. |
[13] | Vu M T, Lin R J, Diao H, et al. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes[J]. Journal of Membrane Science, 2019, 587: 117157. |
[14] | Liu L J, Chen G E, Mao H F, et al. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks[J]. High Performance Polymers, 2021, 33(3): 309-325. |
[15] | Wang J, Xu Y H, Qu H Q, et al. A highly permeable mixed matrix Membrane containing a vertically aligned metal-organic framework for CO2 separation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50441-50450. |
[16] | 王焕君,靳归,李野,等.基于不同粒径ZIF-8多孔液体的二氧化碳捕集性能[J].精细化工, 2023,40(3):572-583. |
Wang Huan-jun, Jin Gui, Li Ye, et al. Carbon dioxide capture performance of porous liquids based on ZIF-8 with different particle sizes[J]. Fine Chemicals, 2023,40(3):572-583. | |
[17] | Abdul H R M, Park S, Kim J S, et al. Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/ propane separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14947-14953. |
[18] | 冯孝权,赵倩倩,张亚涛.基于ZIF-8固定载体复合膜的制备及CO2分离性能研究[J].膜科学与技术, 2021, 41(4): 35-41, 48. |
Feng Xiao-quan, Zhao Qian-qian, Zhang Ya-tao. Study on preparation of fixed carrier composite membrane based on ZIF-8 and CO2 separation performance[J]. Membrane Science and Technology,2021, 41(4): 35-41, 48. | |
[19] | 邱永涛,任吉中,赵丹,等.Pebax/[Bmim][PF6]共混膜的制备及性能研究[J].膜科学与技术, 2016, 36(5):9-15, 30. |
Qiu Yong-tao, Ren Ji-zhong, Zhao Dan, et al. Gas permeation properties of Pebax/[Bmim][PF6] blend membranes[J]. Membrane Science and Technology, 2016, 36(5): 9-15, 30. | |
[20] | Cai X M, Lei T P, Sun D H, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017, 7 (25): 15382–15389. |
[21] | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
[22] | Jiang H Y, Bai L, Yang B B, et al. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[23] | Guiver M D, Yahia M, Dal-Cin M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959. |
[24] | Zheng W J, Ding R, Yang K, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119. |
[25] | Hasan M R, Paseta L, Malankowska M, et al. Synthesis of ZIF-94 from recycled mother liquors: study of the influence of its loading on postcombustion CO2 capture with pebax based mixed matrix membranes[J]. Advanced Sustainable Systems, 2022, 6(1):2100317. |
[26] | Dong L L, Chen M Q, Li J, et al. Metal-organic framework-graphene oxide composites: a facile method to highly improve the CO2 separation performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 801-811. |
[27] | Hao L, Li P, Yang T X, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture[J]. Journal of Membrane Science, 2013, 436:221-231. |
[1] | 柳静献, 杜月. PVDF纳米纤维膜对工业除尘滤料的性能强化[J]. 东北大学学报(自然科学版), 2024, 45(3): 422-429. |
[2] | 车全通;冯立;何荣桓;. 双取代咪唑离子液体与杂多酸复合质子导体的研究[J]. 东北大学学报(自然科学版), 2012, 33(2): 300-304. |
[3] | 柳泉;刘奎仁;韩庆;涂赣峰;. TMPAC-AlCl_3离子液体电镀铝研究[J]. 东北大学学报(自然科学版), 2010, 31(8): 1149-1152. |
[4] | 田鹏;杨家振;宋溪明;梁志德. 室温离子液体FeCl_3-BPC体系的研究[J]. 东北大学学报:自然科学版, 2002, 23(7): 691-693. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||