[1] |
Karakurt I, Aydin G. Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries[J]. Energy, 2023, 263: 125650.
|
[2] |
Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49 (13): 4360-4404.
|
[3] |
柳静献,郭颖赫,赫伟东.碳捕集用烟尘超净滤料现状及研究进展[J].纺织导报,2022(3):41-46.
|
|
Liu Jing-xian, Guo Ying-he, He Wei-dong. Status quo and research progress of ultra-clean filter media for carbon capture[J]. China Textile Leader, 2022(3):41-46.
|
[4] |
Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1):155.
|
[5] |
巩莉丽,白菊,王璨,等.MOF基混合基质气体分离膜界面作用调控研究进展[J].过程工程学报, 2023, 23(4): 489-500.
|
|
Gong Li-li, Bai Ju, Wang Can, et al. Research review in regulating interfacial interaction on MOF-based mixed matrix membranes for gas separation[J]. The Chinese Journal of Process Engineering, 2023, 23(4): 489-500.
|
[6] |
Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932.
|
[7] |
Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673.
|
[8] |
靳卓,王永洪,张新儒,等.Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J].化工学报,2022, 73(10): 4527-4538.
|
|
Jin Zhuo, Wang Yong-hong, Zhang Xin-ru, et al. Preparation of Pebax/a-MoS2/MIP-202 mixed matrix membranes for CO2 separation[J]. CIESC Journal, 2022, 73(10): 4527-4538.
|
[9] |
Jia Q, Lasseuguette E, Lonzinska M M, et al. Hybrid benzimidazole-dichloroimidazole zeolitic imidazolate frameworks based on ZIF-7 and their application in mixed matrix membranes for CO2/N2 separation[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46615-46626.
|
[10] |
An H, Park S, Kwon H T, et al. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes[J]. Journal of Membrane Science, 2017, 526: 367-376.
|
[11] |
Guo Z X, Zheng W J, Yan X M, et al. Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes[J]. Journal of Membrane Science, 2020, 605: 118101.
|
[12] |
Hudiono Y C, Carlisle T K, LaFrate A L, et al. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation[J]. Journal of Membrane Science, 2011, 370(1/2): 141-148.
|
[13] |
Vu M T, Lin R J, Diao H, et al. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes[J]. Journal of Membrane Science, 2019, 587: 117157.
|
[14] |
Liu L J, Chen G E, Mao H F, et al. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks[J]. High Performance Polymers, 2021, 33(3): 309-325.
|
[15] |
Wang J, Xu Y H, Qu H Q, et al. A highly permeable mixed matrix Membrane containing a vertically aligned metal-organic framework for CO2 separation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50441-50450.
|
[16] |
王焕君,靳归,李野,等.基于不同粒径ZIF-8多孔液体的二氧化碳捕集性能[J].精细化工, 2023,40(3):572-583.
|
|
Wang Huan-jun, Jin Gui, Li Ye, et al. Carbon dioxide capture performance of porous liquids based on ZIF-8 with different particle sizes[J]. Fine Chemicals, 2023,40(3):572-583.
|
[17] |
Abdul H R M, Park S, Kim J S, et al. Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/ propane separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14947-14953.
|
[18] |
冯孝权,赵倩倩,张亚涛.基于ZIF-8固定载体复合膜的制备及CO2分离性能研究[J].膜科学与技术, 2021, 41(4): 35-41, 48.
|
|
Feng Xiao-quan, Zhao Qian-qian, Zhang Ya-tao. Study on preparation of fixed carrier composite membrane based on ZIF-8 and CO2 separation performance[J]. Membrane Science and Technology,2021, 41(4): 35-41, 48.
|
[19] |
邱永涛,任吉中,赵丹,等.Pebax/[Bmim][PF6]共混膜的制备及性能研究[J].膜科学与技术, 2016, 36(5):9-15, 30.
|
|
Qiu Yong-tao, Ren Ji-zhong, Zhao Dan, et al. Gas permeation properties of Pebax/[Bmim][PF6] blend membranes[J]. Membrane Science and Technology, 2016, 36(5): 9-15, 30.
|
[20] |
Cai X M, Lei T P, Sun D H, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017, 7 (25): 15382–15389.
|
[21] |
Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
|
[22] |
Jiang H Y, Bai L, Yang B B, et al. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176.
|
[23] |
Guiver M D, Yahia M, Dal-Cin M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959.
|
[24] |
Zheng W J, Ding R, Yang K, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119.
|
[25] |
Hasan M R, Paseta L, Malankowska M, et al. Synthesis of ZIF-94 from recycled mother liquors: study of the influence of its loading on postcombustion CO2 capture with pebax based mixed matrix membranes[J]. Advanced Sustainable Systems, 2022, 6(1):2100317.
|
[26] |
Dong L L, Chen M Q, Li J, et al. Metal-organic framework-graphene oxide composites: a facile method to highly improve the CO2 separation performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 801-811.
|
[27] |
Hao L, Li P, Yang T X, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture[J]. Journal of Membrane Science, 2013, 436:221-231.
|