1 |
Tang X L, Zhang D J, Liu T, et al. Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process[J].Energy, 2019, 166:1181-1193.
|
2 |
李显阳 .并联混合动力汽车模式切换动态协调控制的仿真研究[D].北京:北京交通大学,2014.
|
|
Li Xian-yang. Simulation study on mode-shift dynamic coordinated control of parallel hybrid electric vehicle[D].Beijing: Beijing Jiaotong University, 2014.
|
3 |
王卉 .混合动力汽车模式切换动态协调控制研究[D]. 镇江:江苏大学,2020.
|
|
Wang Hui. Research on dynamic coordinated control of mode switching for hybrid electric vehicles[D]. Zhenjiang: Jiangsu University, 2020.
|
4 |
Zeng X H, Yang N N, Wang J N, et al. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus[J].Mechanical Systems and Signal Processing, 2015, 60:785-798.
|
5 |
Beck R, Richert F, Bollig A, et al. Model predictive control of a parallel hybrid vehicle drivetrain[C]// Proceedings of the 44th IEEE Conference on Decision and Control. Seville, 2005: 2670-2675.
|
6 |
林歆悠,苏炼,郑清香. 应用模型预测控制的混合动力汽车模式切换动态协调控制[J]. 控制理论与应用, 2020, 37(4): 897-906.
|
|
Lin Xin-you, Su Lian, Zheng Qing-xiang. Dynamic coordination control of mode transition using model predictive control for hybrid electric vehicle[J]. Control Theory & Applications, 2020, 37(4):897-906.
|
7 |
张扬. 平衡重式叉车防侧翻控制研究[D].合肥:合肥工业大学,2020.
|
|
Zhang Yang. Research on Anti-rollover Control of Counterbalanced Forklift[D]. Hefei: Hefei University of Technology, 2020.
|
8 |
孙友鼎. 弯道工况下自适应巡航系统多目标控制研究[D].合肥:合肥工业大学,2021.
|
|
Sun You-ding. Research on multi-objective control of adaptive cruise control system under curve condition[D]. Hefei: Hefei University of Technology, 2021.
|
9 |
秦顺琪. 基于可拓理论的智能车辆横纵向协调控制研究[D].镇江:江苏大学,2021.
|
|
Qin Shun-qi. Research on the lateral and longitudinal coordination control of intelligent vehicle based on extension theory[D]. Zhenjiang: Jiangsu University, 2021.
|
10 |
童昌圣. 面向AGV控制的故障诊断与知识可拓管理系统[D].南京:南京航空航天大学,2020.
|
|
Tong Chang-sheng. Fault diagnosis and knowledge extension management system for AGV control[D]. Nanjing: Nanjing University of Aeronautics and Astronaut, 2020.
|
11 |
Zhang J G, Zhao X X, Azad N L. LSTM-based adaptive energy management of connected hybrid mining trucks for improving fuel efficiency[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Macau: IEEE: 2848-2855.
|
12 |
Patinya S. Modeling and control of automatic transmission with planetary gears for shift quality[D]. Arlington: The University of Texas At Arlington, 2011.
|
13 |
Karmel A M. Dynamic modeling and analysis of the hydraulic system of automotive automatic transmissions [C]// 1986 American Control Conference. Seattle: IEEE, 1986: 273–278.
|
14 |
Tugcu A, Hebbale K, Alexandridis A, et al. Modeling and simulation of the powertrain dynamics of vehicles equipped with automatic transmission[C]//Proceedings of Symposium on Simulation of Ground Vehicles and Transportation Systems. Los Angeles, 1986: 39-61.
|
15 |
Karnopp D. Computer simulation of stick-slip friction in mechanical dynamic systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1):100-103.
|
16 |
卢晓晖. 汽车传动系的滚动优化控制研究[D].长春:吉林大学,2013.
|
|
Lu Xiao-hui. Moving Horizon Optimal Control for Automotive Driveline Systems[D]. Changchun: Jilin University, 2013.
|
17 |
Sanada K, Kitagawa A. A study of two-degree-of-freedom control of rotating speed in an automatic transmission, considering modeling errors of a hydraulic system[J]. Control Engineering Practice, 1998, 6:1125–1132.
|
18 |
Dolcini P, Bechart H, Canudas de Wit C. Observer-based optimal control of dry clutch engagement[C]// Processdings of the 44th IEEE Conference on Decision and Control. Seville: IEEE, 2005: 440-445.
|
19 |
Hu C, Wang R R, Yan F J, et al. Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4033-4043.
|