东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (8): 1123-1134.DOI: 10.12068/j.issn.1005-3026.2024.08.008
唐传茵1, 潘律1, 李静红2, 章明理1
收稿日期:
2023-03-29
出版日期:
2024-08-15
发布日期:
2024-11-12
作者简介:
唐传茵(1979-),女,辽宁沈阳人,东北大学副教授.
基金资助:
Chuan-yin TANG1, Lyu PAN1, Jing-hong LI2, Ming-li ZHANG1
Received:
2023-03-29
Online:
2024-08-15
Published:
2024-11-12
摘要:
为了解决无人驾驶车辆的路径跟踪任务中跟踪精度和车辆稳定性之间的冲突问题,提出了一种考虑横向和侧向稳定的路径跟踪控制器.首先以四轮独立驱动智能车为研究对象,设计了一种基于主动转向和电机驱动扭矩分配的整体模型预测控制器,以保证车辆在极端工况下的稳定和跟踪精度.然后通过相位图法和轮胎最大侧偏角设计车辆稳定性约束以优化动力学性能,利用零力矩方法建立侧倾约束,防止侧倾.最后在仿真中对比现有控制器,结果表明,所提出的控制器能够最大化地发挥车辆动力学极限,并在保证车辆稳定性的同时提高车辆的路径跟踪精度.
中图分类号:
唐传茵, 潘律, 李静红, 章明理. 考虑稳定边界和侧倾稳定的车辆路径跟踪控制[J]. 东北大学学报(自然科学版), 2024, 45(8): 1123-1134.
Chuan-yin TANG, Lyu PAN, Jing-hong LI, Ming-li ZHANG. Vehicle Path Tracking Control Considering Stability Boundaries and Roll Stability[J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1123-1134.
参数 | 数值 |
---|---|
整车质量m/kg | 1 760 |
簧上质量 | 1 598 |
质心高度 | 0.6 |
轮距 | 1.6 |
悬架侧倾刚度 | 145 330 |
悬架侧倾阻尼 | 4 500 |
前轴到质心的距离 | 1.4 |
后轴到质心的距离 | 1.6 |
后轮侧偏刚度 | |
前轮侧偏刚度 | |
x轴转动惯量 | |
z轴转动惯量 | 1 636 |
表1 车辆基本参数
Table 1 Basic vehicle parameters
参数 | 数值 |
---|---|
整车质量m/kg | 1 760 |
簧上质量 | 1 598 |
质心高度 | 0.6 |
轮距 | 1.6 |
悬架侧倾刚度 | 145 330 |
悬架侧倾阻尼 | 4 500 |
前轴到质心的距离 | 1.4 |
后轴到质心的距离 | 1.6 |
后轮侧偏刚度 | |
前轮侧偏刚度 | |
x轴转动惯量 | |
z轴转动惯量 | 1 636 |
图4 27 m/s时不同前轮转角下的稳定边界(a)—δf=0 rad; (b)—δf=-0.12 rad; (c)—δf=-0.20 rad; (d)—δf=-0.31 rad.
Fig. 4 Stability boundary under different front wheel angles at 27 m/s
图5 22 m/s时不同前轮转角下的稳定边界(a)—δf=0 rad; (b)—δf=-0.12 rad; (c)—δf=-0.20 rad; (d)—δf=-0.31 rad.
Fig. 5 Stability boundary under different front wheel angles at 22 m/s
参数 | 数值 |
---|---|
预测时域长度 | 15 |
离散步长/s | |
前轮转角最大变化率 | |
前轮最大转角 | |
最大附加横摆力矩 | |
附加横摆力矩最大变化率 |
表2 控制器基本参数
Table 2 Basic parameters of the controller
参数 | 数值 |
---|---|
预测时域长度 | 15 |
离散步长/s | |
前轮转角最大变化率 | |
前轮最大转角 | |
最大附加横摆力矩 | |
附加横摆力矩最大变化率 |
1 | Falcone P, Borrelli F, Asgari J,et al.Predictive active steering control for autonomous vehicle systems[J].IEEE Transactions on Control Systems Technology,2007,15(3):566-580. |
2 | Tjonnas J, Johansen T A.Stabilization of automotive vehicles using active steering and adaptive brake control allocation[J].IEEE Transactions on Control Systems Technology,2010,18(3):545-558. |
3 | Zhang W L, Wang Z P, Drugge L,et al.Evaluating model predictive path following and yaw stability controllers for over‑actuated autonomous electric vehicles[J].IEEE Transactions on Vehicular Technology,2020,69(11):12807-12821. |
4 | Tian Y, Yao Q Q, Hang P,et al. Adaptive coordinated path tracking control strategy for autonomous vehicles with direct yaw moment control[J].Chinese Journal of Mechanical Engineering,2022,35(1):234-248. |
5 | Ren B T, Chen H, Zhao H Y,et al.MPC‑based yaw stability control in in‑wheel‑motored EV via active front steering and motor torque distribution[J].Mechatronics,2016,38:103-114. |
6 | Samsundar J, Huston J C.Estimating lateral stability region of a nonlinear 2 degree‑of‑freedom vehicle[J].SAE Transactions,1998,107:1791-1797. |
7 | Bobier‑Tiu C G, Beal C E, Kegelman J C,et al.Vehicle control synthesis using phase portraits of planar dynamics[J].Vehicle System Dynamics,2019,57(9):1318-1337. |
8 | Cui Q J, Ding R J, Wei C F,et al.Path‑tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope[J].Vehicle System Dynamics,2021,59(11):1672-1696. |
9 | Parida N C, Raha S, Ramani A.Rollover‑preventive force synthesis at active suspensions in a vehicle performing a severe maneuver with wheels lifted off[J].IEEE Transactions on Intelligent Transportation Systems,2014,15(6):2583-2594. |
10 | Stankiewicz P G, Brown A A, Brennan S N.Preview horizon analysis for vehicle rollover prevention using the zero‑moment point[J].Journal of Dynamic Systems Measurement and Control—Transactions of the ASME,2015,137(9):091002. |
11 | 吴西涛,魏超,翟建坤,等.考虑横摆稳定性的无人车轨迹跟踪控制优化研究[J].机械工程学报,2022,58(6):130-142. |
Wu Xi‑tao, Wei Chao, Zhai Jian‑kun,et al.Study on the optimization of autonomous vehicle on path‑following considering yaw stability[J].Chinese Journal of Mechanical Engineering,2022,58(6):130-142. | |
12 | 刘凯,龚建伟,陈舒平,等.高速无人驾驶车辆最优运动规划与控制的动力学建模分析[J].机械工程学报,2018,54(14):141-151. |
Liu Kai, Gong Jian‑wei, Chen Shu‑ping,et al.Dynamic modeling analysis of optimal motion planning and control for high‑speed self‑driving vehicles[J].Chinese Journal of Mechanical Engineering,2018,54(14):141-151. | |
13 | Erlien S M, Fujita S, Gerdes J C.Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(2):441-451. |
14 | 路宏广,赵树恩.基于鲁棒模型预测的智能汽车轨迹跟踪控制研究[J].系统仿真学报,2022,34(1):153-162. |
Lu Hong‑guang, Zhao Shu‑en.research on intelligent vehicle trajectory tracking control based on robust model prediction[J].Journal of System Simulation,2022,34(1):153-162. | |
15 | 冷姚,赵树恩.智能车辆横向轨迹跟踪的显式模型预测控制方法[J].系统仿真学报,2021,33(5):1177-1187. |
Leng Yao, Zhao Shu‑en.Explicit model predictive control for intelligent vehicle lateral trajectory tracking[J].Journal of System Simulation,2021,33(5):1177-1187. | |
16 | 张志达,郑玲,张紫微,等.基于自适应模型预测的智能汽车横向轨迹跟踪控制[J].中国公路学报,2022,35(7):305-316. |
Zhang Zhi‑da, Zheng Ling, Zhang Zi‑wei,et al.Lateral trajectory tracking control of intelligent vehicles based on adaptive model prediction[J].China Journal of Highway and Transport,2022,35(7):305-316. | |
17 | Peng H N, Wang W D, An Q,et al.Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent‑drive vehicles[J].IEEE Transactions on Vehicular Technology,2020,69(6):6053-6066. |
18 | 龚建伟,姜岩,徐威.无人驾驶车辆模型预测控制[M].北京:北京理工大学出版社,2014. |
Gong Jian‑wei, Jiang Yan, Xu Wei.Model predictive control for self‑driving vehicles[M].Beijing:Beijing Institute of Technology Press,2014. | |
19 | Wang P, Liu Z Y, Liu Q F,et al.An MPC‑based manoeuvre stability controller for full drive‑by‑wire vehicles[J].Control Theory and Technology,2019,17(4):357-366. |
20 | 孙银健.基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D].北京:北京理工大学,2015. |
Sun Yin‑jian.Research on model predictive control‑based trajectory tracking algorithm for unmanned vehicles[D].Beijing:Beijing Institute of Technology,2015. |
[1] | 王宏伟, 李磊, 刘晨宇, 汪洵. 基于变参数模型的智能车辆转向执行器故障诊断[J]. 东北大学学报(自然科学版), 2024, 45(7): 913-920. |
[2] | 李寿涛, 魏玉博, 李秋媛, 于丁力. 考虑车辆侧偏刚度变化的MPC稳定性控制方法[J]. 东北大学学报(自然科学版), 2023, 44(2): 162-167. |
[3] | 唐传茵, 赵懿峰, 赵亚峰, 周淑文. 智能车辆轨迹跟踪控制方法研究[J]. 东北大学学报:自然科学版, 2020, 41(9): 1297-1303. |
[4] | 张云洲,杨兵,李龙,蒋建军. 基于电磁效应的轮式智能车导航控制[J]. 东北大学学报(自然科学版), 2013, 34(7): 917-921. |
[5] | 张云洲;师恩义;吴成东;秦召兵;. 基于CCD的智能车导航系统研究[J]. 东北大学学报(自然科学版), 2009, 30(2): 162-165. |
[6] | 王永刚;柴天佑;. 蒸发过程的非线性模型预测控制[J]. 东北大学学报(自然科学版), 2008, 29(10): 1369-1372. |
[7] | 杨英;赵广耀;武华栋. 汽车智能驾驶系统中运动图像的实时检测与跟踪[J]. 东北大学学报(自然科学版), 2005, 26(10): 1002-1005. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||