东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (4): 151-158.DOI: 10.12068/j.issn.1005-3026.2025.20239060
• 资源与土木工程 • 上一篇
魏作安, 张雪怡, 郭宏伟, 路停
收稿日期:
2023-12-05
出版日期:
2025-04-15
发布日期:
2025-07-01
作者简介:
魏作安(1965—),男,江西南昌人,重庆大学教授,博士生导师.
基金资助:
Zuo-an WEI, Xue-yi ZHANG, Hong-wei GUO, Ting LU
Received:
2023-12-05
Online:
2025-04-15
Published:
2025-07-01
摘要:
为探究电渗改良尾矿泥力学性能的可行性与效果,以电压梯度、电压加载方式为变量,利用自制的电渗试验箱对铜尾矿泥和磷尾矿泥分别开展室内电渗试验.通过分析电渗过程中的排水量与电流衰减规律以及电渗改良后尾矿泥的含水率、干密度和抗剪强度等指标,并结合电渗能耗,探究了电渗改良尾矿泥力学性能的有效性及最佳作用方式.结果表明:电渗排水量与电压强度和电压加载级数正相关;相较于单级电压加载,多级电压加载时的电流衰减趋势减缓,电渗结束后尾矿泥的含水率更低、干密度更大、抗剪强度更高,力学性能的改良效果更优;在电渗过程中,多级电压加载的平均能耗比单级加载更低;电渗改良尾矿泥力学性能的最佳作用方式为15—20—25—30 V 4级电压加载.
中图分类号:
魏作安, 张雪怡, 郭宏伟, 路停. 电渗改良尾矿泥力学性能试验研究[J]. 东北大学学报(自然科学版), 2025, 46(4): 151-158.
Zuo-an WEI, Xue-yi ZHANG, Hong-wei GUO, Ting LU. Experimental Study on Electroosmotic Improvement of Mechanical Properties of Tailings Mud[J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 151-158.
尾矿类别 | 特征粒径/μm | 不均匀系数Cu | 曲率系数Cc | |||
---|---|---|---|---|---|---|
d10 | d30 | d50 | d60 | |||
铜尾矿 | 28.77 | 76.44 | 127.04 | 166.61 | 5.79 | 1.22 |
磷尾矿 | 6.59 | 10.96 | 21.07 | 30.57 | 4.64 | 0.60 |
表1 铜尾矿和磷尾矿的特征粒径
Table 1 Characteristic particle sizes of copper tailings and phosphate tailings
尾矿类别 | 特征粒径/μm | 不均匀系数Cu | 曲率系数Cc | |||
---|---|---|---|---|---|---|
d10 | d30 | d50 | d60 | |||
铜尾矿 | 28.77 | 76.44 | 127.04 | 166.61 | 5.79 | 1.22 |
磷尾矿 | 6.59 | 10.96 | 21.07 | 30.57 | 4.64 | 0.60 |
试验组别 | 电压加载方式 | 试验组别 | 电压加载方式 |
---|---|---|---|
T0 | 空白对照,静置 | T7 | 15-30 |
T1 | 15 | T8 | 20-25 |
T2 | 20 | T9 | 20-30 |
T3 | 25 | T10 | 15-20-25 |
T4 | 30 | T11 | 15-20-30 |
T5 | 15-20 | T12 | 20-25-30 |
T6 | 15-25 | T13 | 15—20—25—30 |
表2 电渗改良尾矿泥的试验方案 (improvement of tailings mud V)
Table 2 Experimental scheme for electroosmotic
试验组别 | 电压加载方式 | 试验组别 | 电压加载方式 |
---|---|---|---|
T0 | 空白对照,静置 | T7 | 15-30 |
T1 | 15 | T8 | 20-25 |
T2 | 20 | T9 | 20-30 |
T3 | 25 | T10 | 15-20-25 |
T4 | 30 | T11 | 15-20-30 |
T5 | 15-20 | T12 | 20-25-30 |
T6 | 15-25 | T13 | 15—20—25—30 |
试验 组别 | 阴极处 | 阳极处 | ||
---|---|---|---|---|
黏聚力 c/kPa | 内摩擦角φ/(°) | 黏聚力 c/kPa | 内摩擦角φ/(°) | |
Tc0 | 1.44 | 46.29 | 6.43 | 45.57 |
Tc1 | 5.37 | 46.29 | 14.94 | 44.36 |
Tc4 | 12.32 | 48.80 | 17.60 | 50.45 |
Tc7 | 4.54 | 48.43 | 16.24 | 47.60 |
Tc9 | 9.40 | 46.65 | 7.83 | 50.44 |
Tc10 | 15.07 | 44.00 | 15.76 | 48.29 |
Tc12 | 8.96 | 51.23 | 15.22 | 51.89 |
Tc13 | 17.78 | 48.92 | 13.72 | 52.73 |
Tp0 | 4.33 | 31.10 | 4.23 | 30.53 |
Tp1 | 5.33 | 30.95 | 6.55 | 30.58 |
Tp4 | 7.34 | 31.80 | 7.45 | 32.09 |
Tp7 | 6.25 | 33.34 | 3.20 | 35.17 |
Tp9 | 5.67 | 32.28 | 6.98 | 33.88 |
Tp12 | 6.59 | 33.13 | 8.78 | 33.77 |
Tp13 | 8.49 | 33.75 | 13.29 | 34.76 |
表3 电渗后尾矿泥的黏聚力与内摩擦角 (tailings mud after electroosmosis)
Table 3 Cohesion and internal friction angle of
试验 组别 | 阴极处 | 阳极处 | ||
---|---|---|---|---|
黏聚力 c/kPa | 内摩擦角φ/(°) | 黏聚力 c/kPa | 内摩擦角φ/(°) | |
Tc0 | 1.44 | 46.29 | 6.43 | 45.57 |
Tc1 | 5.37 | 46.29 | 14.94 | 44.36 |
Tc4 | 12.32 | 48.80 | 17.60 | 50.45 |
Tc7 | 4.54 | 48.43 | 16.24 | 47.60 |
Tc9 | 9.40 | 46.65 | 7.83 | 50.44 |
Tc10 | 15.07 | 44.00 | 15.76 | 48.29 |
Tc12 | 8.96 | 51.23 | 15.22 | 51.89 |
Tc13 | 17.78 | 48.92 | 13.72 | 52.73 |
Tp0 | 4.33 | 31.10 | 4.23 | 30.53 |
Tp1 | 5.33 | 30.95 | 6.55 | 30.58 |
Tp4 | 7.34 | 31.80 | 7.45 | 32.09 |
Tp7 | 6.25 | 33.34 | 3.20 | 35.17 |
Tp9 | 5.67 | 32.28 | 6.98 | 33.88 |
Tp12 | 6.59 | 33.13 | 8.78 | 33.77 |
Tp13 | 8.49 | 33.75 | 13.29 | 34.76 |
试验组别 | 电渗总能耗 | 平均排水能耗 |
---|---|---|
kW·h | kW·h·mL-1 | |
Tc4 | 2.03×10-2 | 448.34 |
Tc9 | 1.68×10-2 | 302.40 |
Tc12 | 1.58×10-2 | 214.64 |
Tc13 | 1.41×10-2 | 179.36 |
Tp4 | 0.148 | 3 540.24 |
Tp9 | 0.153 | 2 653.61 |
Tp12 | 0.160 | 2 575.89 |
Tp13 | 0.161 | 2 390.39 |
表4 尾矿泥电渗能耗计算结果 (electroosmotic energy consumption)
Table 4 Calculation results of tailings mud
试验组别 | 电渗总能耗 | 平均排水能耗 |
---|---|---|
kW·h | kW·h·mL-1 | |
Tc4 | 2.03×10-2 | 448.34 |
Tc9 | 1.68×10-2 | 302.40 |
Tc12 | 1.58×10-2 | 214.64 |
Tc13 | 1.41×10-2 | 179.36 |
Tp4 | 0.148 | 3 540.24 |
Tp9 | 0.153 | 2 653.61 |
Tp12 | 0.160 | 2 575.89 |
Tp13 | 0.161 | 2 390.39 |
1 | Casagrande L. Electro-osmosis in soils[J]. Geotechnique, 1948, 1(3): 159-177. |
2 | 郑凌逶. 滨海软土地基电渗加固方法研究[D]. 杭州: 浙江大学, 2018. |
Zheng Ling-wei. Electroosmosis reinforcement technical research of coastal soft soil foundation[D]. Hangzhou: Zhejiang University, 2018. | |
3 | Lockhart N C. Electro-osmotic dewatering of clays, Influence of salt, acid and flocculants[J]. Colloids and surfaces, 1983, 6(3): 239-251. |
4 | Shang J Q, Dunlap W A. Improvements of soft clays by high voltage electro kinetics[J]. Geotechnical engineering Journal, 1996, 29(2): 117-120. |
5 | 李瑛, 龚晓南, 张雪婵. 电压对一维电渗排水影响的试验研究[J]. 岩土力学, 2011, 32(3): 709-714. |
Li Ying, Gong Xiao-nan, Zhang Xue-chan. Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage[J]. Rock and Soil Mechanics, 2011, 32(3): 709-714. | |
6 | Karunaratne G P. Prefabricated and electrical vertical drains for consolidation of soft clay[J]. Geotextiles and Geomembranes, 2011, 29(4): 391-401. |
7 | 刘飞禹, 宓炜, 王军, 等. 逐级加载电压对电渗加固吹填土的影响[J]. 岩石力学与工程学报, 2014, 33(12): 2582-2591. |
Liu Fei-yu, Mi Wei, Wang Jun, et al. Influence of applying stepped voltage in electro-osmotic reinforcement of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2582-2591. | |
8 | 曾芳金,石常鑫,袁莉莉,等. 不同增压方式下电渗法加固滩涂淤泥试验研究[J]. 江西理工大学学报, 2018, 39(3): 1-5. |
Zeng Fang-jin, Shi Chang-xin, Yuan Li-li, et al. Experimental study on tideland sludge with electroosmotic method under different stepped voltage modes[J]. Journal of Jiangxi University of Science and Technology, 2018, 39(3): 1-5. | |
9 | 龚晓南, 焦丹. 间歇通电下软黏土电渗固结性状试验分析[J]. 中南大学学报(自然科学版), 2011, 42(6): 1725-1730. |
Gong Xiao-nan, Jiao Dan. Experimental study on electro-osmotic consolidation of soft clay under intermittent current condition[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1725-1730. | |
10 | 陈卓, 周建, 温晓贵, 等. 电极反转对电渗加固效果的试验研究[J]. 浙江大学学报(工学版), 2013, 47(9): 1579-1584. |
Chen Zhuo, Zhou Jian, Wen Xiao-gui, et al. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(9): 1579-1584. | |
11 | 王柳江, 刘斯宏, 朱豪, 等. 电极布置形式对电渗加固软土效果的影响试验[J]. 河海大学学报(自然科学版), 2013, 41(1): 64-69. |
Wang Liu-jiang, Liu Si-hong, Zhu Hao, et al. Experimental study of effects of electrode configuration on electroosmosis reinforcement for soft soil[J]. Journal of Hohai University(Natural Science),2013, 41(1): 64-69. | |
12 | 李一雯, 周建, 龚晓南, 等. 电极布置形式对电渗效果影响的试验研究[J]. 岩土力学, 2013, 34(7): 1972-1978. |
Li Yi-wen, Zhou Jian, Gong Xiao-nan, et al. Experimental research on influence of electrode array on electroosmotic effect[J]. Rock and Soil Mechanics, 2013, 34(7): 1972-1978. | |
13 | 张雷, 王宁伟, 景立平, 等. 电渗排水固结中电极材料的对比试验[J]. 岩土力学, 2019, 40(9): 3493-3501,3514. |
Zhang Lei, Wang Ning-wei, Jing Li-ping, et al. Comparative experiments of different electrode materials on electro-osmotic consolidation[J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501, 3514. | |
14 | Wu H, Hu L M, Wen Q B. Electro-osmotic enhancement of bentonite with reactive and inert electrodes[J]. Applied Clay Science, 2015, 111: 76-82. |
15 | Wu H, Hu L M. Microfabric change of electro-osmotic stabilized bentonite[J]. Applied Clay Science, 2014, 101: 503-509. |
16 | 尹光志, 魏作安, 许江. 细粒尾矿及其堆坝稳定性分析[M]. 重庆: 重庆大学出版社, 2004. |
Yin Guang-zhi, Wei Zuo-an, Xu Jiang. The characteristics and dam stability analysis of fine grained tailings[M]. Chongqing: Chongqing University Press, 2004. | |
17 | Ruiz E, Huamni L, Paucar J, et al. Planning the dewatering of a tailings storage facility[J]. Mine Water and the Environment, 2021, 40(1): 270-284. |
18 | 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 2013. |
Chen Zhong-yi, Zhou Jing-xing, Wang Hong-jin. Soil mechanics[M]. Beijing: Tsinghua University Press, 2013. | |
19 | Vijh A K. Electroosmotic dewatering of clays and suspensions: components of voltage in an electroosmotic cell[J]. Drying Technology, 1999, 17(3): 565-574. |
20 | 胡俞晨, 王钊, 庄艳峰. 电动土工合成材料加固软土地基实验研究[J]. 岩土工程学报, 2005, 27(5): 582-586. |
Hu Yu-chen, Wang Zhao, Zhuang Yan-feng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 582-586. | |
21 | 李金典, 韩猛, 封海洋, 等. 低渗透致密黏土电渗排水技术室内试验研究[J]. 岩石力学与工程学报, 2021, 40(sup2): 3464-3471. |
Li Jin-dian, Han Meng, Feng Hai-yang, et al. Laboratory experimental study on electroosmotic drainage technology of low-permeability dense clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(sup2): 3464-3471. | |
22 | 万勇, 杨庆, 杨钢. 电势梯度对海相淤泥电渗试验的影响[J]. 水利与建筑工程学报, 2014, 12(4): 94-98. |
Wan Yong, Yang Qing, Yang Gang. Electro-osmotic Experiment on Marine Sludge of Different Voltage Gradients[J]. Journal of Water Resources and Architectural Engineering, 2014, 12(4): 94-98. | |
23 | 袁国辉, 胡秀青, 刘飞禹, 等. 絮凝-逐级加压电渗法改良疏浚淤泥试验研究[J]. 岩石力学与工程学报, 2020, 39(sup1): 2995-3003. |
Yuan Guo-hui, Hu Xiu-qing, Liu Fei-yu, et al. Experimental study on the improvement of dredged slurry by flocculation-step-by-step loading voltage electro-osmosis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(sup1): 2995-3003. | |
24 | Corwin D L, Lesch S M. Apparent soil electrical conductivity measurements in agriculture[J]. Computers and Electronics in Agriculture, 2005, 46(1/2/3): 11-43. |
25 | Morris D V, Hillis S F, Caldwell J A. Improvement of sensitive silty clay by electroosmosis[J]. Canadian Geotechnical Journal, 1985, 22(1): 17-24. |
26 | 杨克军, 袁国辉, 符洪涛, 等. 通电方式对电渗加固软土影响试验研究[J]. 水利水电技术, 2020, 51(2): 170-176. |
Yang Ke-jun, Yuan Guo-hui, Fu Hong-tao, et al. Experimental study on influence of electrification method on soft soil enhanced by electroosmosis[J]. Water Resources and Hydropower Engineering, 2020, 51(2): 170-176. | |
27 | 朱侠达. 河道淤泥电渗加固修复试验研究[D]. 杭州: 浙江大学, 2019. |
Zhu Xia-da. Experimental study on electroosmosis reinforcement and repair of river silt[D]. Hangzhou: Zhejiang University, 2019. | |
28 | 申春妮, 方祥位, 王和文, 等. 吸力、含水率和干密度对重塑非饱和土抗剪强度影响研究[J]. 岩土力学,2009, 30(5): 1347-1351. |
Shen Chun-ni, Fang Xiang-wei, Wang He-wen, et al. Research on effects of suction, water content and dry density on shear strength of remolded unsaturated soils[J]. Rock and Soil Mechanics, 2009, 30(5): 1347-1351. | |
29 | Wan T Y, Mitchell J K. Electro-osmotic consolidation of soils[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): 473-491. |
30 | 郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073. |
Zheng Ling-wei, Xie Xin-yu, Xie Kang-he, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1064-1073. |
[1] | 王斐笠, 王述红, 张紫杉, 修占国. 基于可拓理论的边坡强度指标[J]. 东北大学学报:自然科学版, 2018, 39(4): 553-557. |
[2] | 林呈祥, 钟世英, 凌道盛. 模拟月壤颗粒形状特征及其对抗剪强度影响分析[J]. 东北大学学报:自然科学版, 2016, 37(11): 1640-1644. |
[3] | 郭牡丹,朱浮声,王述红,荣晓洋. 基于结构面特征的优势组划分方法[J]. 东北大学学报:自然科学版, 2014, 35(2): 295-298. |
[4] | 徐亚丰;王连广;曹阅;刘之洋. 钢骨高强混凝土框架节点抗剪承载力的理论分析[J]. 东北大学学报(自然科学版), 2003, 24(4): 386-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||