| [1] |
International Diabetes Federation. IDF diabetes atlas[M]. 10th ed. Brussels: International Diabetes Federation, 2021.
|
| [2] |
Wan H, Wang Y Y, Fang S J, et al. Associations between the neutrophil-to-lymphocyte ratio and diabetic complications in adults with diabetes: a cross-sectional study[J]. Journal of Diabetes Research, 2020, 2020(1): 6219545.
|
| [3] |
ElSayed N A, Aleppo G, Aroda V R, et al. 17 diabetes advocacy: standards of care in diabetes—2023[J]. Diabetes Care, 2023, 46(sup1): 279-280.
|
| [4] |
Echouffo-Tcheugui J B, Selvin E. Prediabetes and what it means: the epidemiological evidence[J]. Annual Review of Public Health, 2021, 42: 59-77.
|
| [5] |
Faerch K, Hulmán A, Solomon T P J. Heterogeneity of prediabetes and type 2 diabetes: implications for prediction, prevention and treatment responsiveness[J]. Current Diabetes Reviews, 2016, 12(1): 30-41.
|
| [6] |
Liu Q, Zhou Q, He Y F, et al. Predicting the 2-year risk of progression from prediabetes to diabetes using machine learning among Chinese elderly adults[J]. Journal of Personalized Medicine, 2022, 12(7): 1055.
|
| [7] |
Tabák A G, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development[J]. The Lancet, 2012, 379(9833): 2279-2290.
|
| [8] |
Brannick B, Wynn A, Dagogo-Jack S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications[J]. Experimental Biology and Medicine, 2016, 241(12): 1323-1331.
|
| [9] |
Cai X Y, Zhang Y L, Li M J, et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis[J]. BMJ, 2020, 370: m2297.
|
| [10] |
Mutie P M, Pomares-Millan H, Atabaki-Pasdar N, et al. An investigation of causal relationships between prediabetes and vascular complications[J]. Nature Communications, 2020, 11: 4592.
|
| [11] |
Cosic V, Jakab J, Pravecek M K, et al. The importance of prediabetes screening in the prevention of cardiovascular disease[J]. Medical Archives, 2023, 77(2): 97-104.
|
| [12] |
Tobore I, Kandwal A, Li J Z, et al. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach[J]. Knowledge-Based Systems, 2020, 209: 106464.
|
| [13] |
Wang L Y, Mu Y, Zhao J, et al. IGRNet: a deep learning model for non-invasive, real-time diagnosis of prediabetes through electrocardiograms[J]. Sensors, 2020, 20(9): 2556.
|
| [14] |
Lin Y C, Lin C S, Chang T S, et al. Early sensory neurophysiological changes in prediabetes[J]. Journal of Diabetes Investigation, 2020, 11(2): 458-465.
|
| [15] |
Oliveira C M, Ghezzi A C, Cambri L T. Higher blood glucose impairs cardiac autonomic modulation in fasting and after carbohydrate overload in adults[J]. Applied Physiology, Nutrition, and Metabolism, 2021, 46(3): 221-228.
|
| [16] |
Coopmans C, Zhou T L, Henry R M A, et al. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the maastricht study[J]. Diabetes Care, 2020, 43(5): 1126-1133.
|
| [17] |
Rajendra A U, Paul J K, Kannathal N, et al. Heart rate variability: a review[J]. Medical and Biological Engineering and Computing, 2006, 44(12): 1031-1051.
|
| [18] |
Vijay C, Darshan M, Vishnu R. Cardiac autonomic dysfunction and ECG abnormalities in patients with type 2 diabetes mellitus—a comparative cross-sectional study[J]. National Journal of Physiology, Pharmacy and Pharmacology, 2016, 6(3): 178.
|
| [19] |
Igbe T, Li J Z, Kandwal A, et al. An absolute magnitude deviation of HRV for the prediction of prediabetes with combined artificial neural network and regression tree methods[J]. Artificial Intelligence Review, 2022, 55(3): 2221-2244.
|
| [20] |
中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志, 2021, 13(4): 317-411.
|
|
Chinese Diabetes Society. Type 2 diabetes prevention and treatment comprehensive guide (2020 edition) [J]. Chinese Journal of Diabetes,2021, 13(4): 317-411.
|
| [21] |
Cui X R, Tian L R, Li Z W, et al. On the variability of heart rate variability—evidence from prospective study of healthy young college students[J]. Entropy, 2020, 22(11): 1302.
|
| [22] |
Sassi R, Cerutti S, Lombardi F, et al. Advances in heart rate variability signal analysis: joint position statement by the E-cardiology ESC working group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society[J]. Europace, 2015, 17(9): 1341-1353.
|
| [23] |
Pan J, Tompkins W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230-236.
|
| [24] |
Catai A M, Pastre C M, de Godoy M F, et al. Heart rate variability: are you using it properly? standardisation checklist of procedures[J]. Brazilian Journal of Physical Therapy, 2020, 24(2): 91-102.
|
| [25] |
Forte G, Favieri F, Casagrande M. Heart rate variability and cognitive function: a systematic review[J]. Frontiers in Neuroscience, 2019, 13: 710.
|
| [26] |
Jwo D J, Chang W Y, Wu I H. Windowing techniques, the welch method for improvement of power spectrum estimation[J]. Computers, Materials and Continua, 2021, 67(3): 3983-4003.
|
| [27] |
Jin Y, Duan Y L. Wavelet scattering network-based machine learning for ground penetrating radar imaging: application in pipeline identification[J]. Remote Sensing, 2020, 12(21): 3655.
|
| [28] |
Mallat S. Group invariant scattering[J]. Communications on Pure and Applied Mathematics, 2012, 65(10): 1331-1398.
|
| [29] |
Ostroumora L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[C]// Advances in Neural Information Processing Systems. Montreal, 2018: 6639-6649.
|
| [30] |
Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms[J]. Artificial Intelligence Review, 2021, 54(3): 1937-1967.
|
| [31] |
Zhang Y X, Zhao Z G, Zheng J H. CatBoost: a new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China[J]. Journal of Hydrology, 2020, 588: 125087.
|